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Kinetic theory of dense fluids of rigid biaxial ellipsoids
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The transport equation for a one-particle distribution funcfioha pure and dense fluid composed of hard
biaxial ellipsoids has been derived by the Enskog method through a modification of the Taxman equation
which describes the corresponding low-density fluid. The equatiohHas been utilized in obtaining approxi-
mate equations of continuity, linear momentum, and energy of the dense fluid, and has then been solved
through the Enskog infinite series expansion technique, and a second-order approximate forfrida feen
achieved. Using this, results are derived for the hydrodynamic pressure, shear and bulk viscosity coefficients,
and heat conductivity of the fluid. Fast exchange of energy between the translational and rotational motions is
assumed throughout the calculation. The quantities ultimately appearing in the results, which cannot further be
reduced analytically and require numerical evaluation, are the four-dimensional quadratures over the orienta-
tional coordinates of two interacting rigid ellipsoidal molecules. In the appropriate limit, all results reduce to
those obtained by Enskog for a dense fluid of hard spheres, and a first-order modified Eucken-type formula for
the dense fluid emerges.

PACS numbgs): 05.20.Dd, 05.60-k

[. INTRODUCTION skog further suggested how the transport coefficient results
can be applied in obtaining semiemperical formulas for the
The Boltzmann transport equatigi] of a low-density  coefficients of real dense fluids.
pure fluid composed of spherical molecules was derived by Although both the Boltzmann and Enskog equations have
Boltzmann more than a century ago and is based on than impressive list of very successful applications, their deri-
assumptions that collisions between molecules are strictlyations are based on intuitive ideas of Boltzmann which do
binary and that successive collisions are uncorrel@eo- not depend in a rigorous manner on the laws of mechanics.
lecular chaos assumptiprEnskog[1] had obtained normal However, the theoretical foundation of the Boltzmann
solutions of the equation through an infinite series expansiosquation was first laid out by Bogoliubd®] and then by
method and derived fairly accurate expressions for the transsthers [7]. The Bogoliubov-Born-Green-Kirkwood-Yvon
port coefficients of hard-sphe(elS) fluids. Throughout their (BBGKY) equation was first derived from the Liouville
work both Boltzmann and Enskog neglected the internal enequation, the generalized kinetic equation was then obtained
ergy of the molecule because the encounters between them it by using the assumption of generalized molecular
molecules are elastic and therefore interconversion of interehaos[4], and finally the Boltzmann equation for a HS fluid
nal and translational energies is not possible. Enskogvas derived. Hollinger and Curti$g] and other§9] moved
[1(a),2—4] modified the HS Boltzmann equation in a way further and derived from the Liouville equation the Enskog
that extends its range of validity to considerably higher denequation or equations consistent with it and found that the
sities; this is now known as the Enskog equation. The EnEnskog equation is correct. Thus, the theoretical basis of the
skog theory retains the two basic assumptions used in thBoltzmann and Enskog equations was firmly established.
derivation of the Boltzmann equation and corrects for the A semiclassical treatment of the first-order transport coef-
finite size of the colliding particles in two important ways. ficients of a low-density fluid of molecules with internal en-
First, account is taken of the fact that at high densities thergy, allowing for exchange of energy between the internal
collision frequency is modified by the excluded volume ef-and translational degrees of freedom, has been given by
fect, and secondly instantaneous collisional or interactionalWang-Chang, Uhlenbeck and de Bag@vCUB) [10] and its
transfer of translational energy as well as linear momentunelassical counterpart has been studied independently by Tax-
is incorporated into the theory. Enskog solved his equatioman[11] and Curtis§12]. In the classical method, both the
through the procedure that he had adopted in solving th&anslational and internal degrees of freedom are treated clas-
Boltzmann equation. He obtained modified values for thesically while in the semiclassical one the internal energy is
viscosity and heat conductivity coefficients of the dense fluicconsidered quantum mechanically. Obviously, the encoun-
and found that collisional transfer significantly changes theers between the nonspherical molecules are inelastic and the
values of the coefficients from those of a low-density fluid.transport equations of the one-patrticle distribution funcfion
At moderate densities, the values of the coefficients agrederived by the above mentioned workers are based upon a
very well with the results of Alder and co-workdi=(b),5(c)] heuristically derived generalization of the Boltzmann equa-
obtained through molecular dynamics HS simulation. Ention. The WCUB, Curtiss, and Taxman equations have been
given a common name as the generalized Boltzm@iB)
equation. The various formulas for the first-order transport
*Permanent address: Department of Physics, University of Rancoefficients of a low-density fluid of asymmetric molecules
chi, Ranchi 834 008, India. have been derived by solving the GB equation either by the
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Enskog method10,11] or by a variational procedurel2].  and the zero-frequency transport coefficient formulas for
Recently[13], a minor error has been detected and removedow-density model fluids have been predictglB]. In the
from the collisional integral$Cls) of the coefficient formu- appropriate limit, the exact first-order formuleis(a), 16(b)]

las obtained through the Enskog technique. Curtiss an€lerived through the Enskog-type solution of the Taxman
Dahler [14] have given a systematic statistical-mechanicalfduation reduce to thoga3] of a dilute fluid consisting of
derivation of the classical GB equation from the generalizeci1ard uniaxial ellipsoids.

Liouville equation by using the technique that Hollinger and The first objective of the present investigation is to de-
velop an Enskog-type transport equation for a pure and dense
Curtiss[8] had evolved in deriving the Enskog equation for a P gy p . e

| A e ~“model fluid consisting of rigid biaxial ellipsoids based on the
dense fluid of HS molecules. A generallzed k|net|c equationraxman or classical GB equation of the low-density fluid:;
[15] for f and a generalized Langevin equation this is described in Secs. Il and Ill. There are two reasons
[16(b),16(c),16(f)] for time correlation function§TCFs of a  behind choosing this model: First, this model and its simpli-
dense fluid of polyatomic molecules have also recently beefied form, a hard uniaxial ellipsoidal fluid, are good reference
obtained from the Liouville equation, and the resulting equa{17] systems for the study of the thermodynamic and trans-
tions have been solved to obtain formulas for the frequencyport properties of nonlinear and linear polyatomic fluids.
dependent transport co-efficients of a dense model fluid oPver a range of eccentricities, these models form nematic
hard uniaxial ellipsoid¢spheroids The results for the coef- and, in some cases, smectic liquid crystal phases and are
ficients obtained through the solution of the generalized kicurrently being studied13,18-22 by analytical and mo-
netic equation are very complicated. However, in the limit oflecular dynamics simulation methods. The simulation studies
hard spheres, the zero-frequency results yield the corréiuggest that the formation of a liquid crystal is, to a large
sponding Enskog expressions for the coefficients. extent, an anisotropic excluded v.olume.effect._ Secondly, the
The frequency-dependent formulas for the transport coefcollision cross section for the inelastic collisions of the
ficients of the dense model fluid predicted through the TCEMCdel molecules can be calculated exactly because the ge-
method and discussed in Ref46(b)—16(e)] are controver- ometry of the molecules is now well understd@a,24], and

sial and far from complete. The zero-frequency shear viscost—heer;gE’r?']e"’c‘j complete analysis of collision problems can be

ity formula obtained through the method consists of the su Th q f thi Ki derive f las f
of two terms. One term is the same in Rdf$6(a)—16f)], h € secon pufrf‘p(_)se ort S\r/]vor IS tod erve orfmu 35 or
but the other term in Ref$16(b)—16(e)] differs from that of { € viscosily coe |C|gnts an eat_con UCt.'V't.y of a dense
Refs.[16(a)] and[16(f)], although the two different viscosity fluid. IP olrdt_ar to faclf]hleved'gplsdwe first Obta'n.'n Sdec.. I\ij"."
formulas given in Refg16(b)—16(¢)] and in Ref[16(a)] as  1o'ma!l SO Ut'onﬁ the modified Taxman equatmr;l, erivedin
well as in[16(f)] reduce in the HS limit to the corresponding Sec. |l up to the second approximation, by the standard

- . infinite series expansion technique of Enskog. During the
Enskog formuld 1(a)]. It is stated in Ref[16(f)], of course, n . .
with a measure of justification that the formula given in Refs.COUISE of the solution, we found a formula for the hydrostatic

[16(a)] and [16(F)] is far superior to that of Refd16(b)— pressure and also three equations which are, respectively, the

16(e)]; however, the predicted values obtained through thiéirSt approximations to the equa.tions of continuity, ””eaf
superior formula do not agree even qualitatively with simuy-momentum, and energy of the fluid. The pressure formula is

lation results available for different densities. Furthermore,val'd.provlded the flg'|d IS Ina uniform stquy state. The
olution has been utilized in Sec. V for deriving results for

the frequency-dependent thermal conductivity expression it : d th f tor that arise due t

Refs.[16(b)—16(d)] for the fluid is inappropriate because its N prests_ure efn?r?r an | e:ma -Suxt_vec \0/1 da Ianseth Ltlﬁ 0

zero-frequency results for the dilute as well as for the densgee. motions ot the molecules. section eals wi €
collision transfer flux vectors, and in Sec. VIl first-order ap-

model fluid fail to reduce in the appropriate limit to the HS ) o
Enskog formula[1(a)]. The TCF method has not yet been proximate results for the transport co-efficients have been

. g . . . achieved, the outcome of the various fluxes generated from
applied to obtaining an expression for the volume wscosﬂ;ﬁ]e motions of the molecules as well as frOf?l the instanta-

of a low-density model fluid and, therefore, it has not been i ¢ the dist ting th " f
possible through this method to predict a correct formula fofl€OUS transier across the distance separating theé centers o

the hydrostatic pressure of a dense fluid that is not in Jwo colliding molecules momentarily in contact and station-
steady state. ary. . . -
Different zero-frequency expressions for the thermal con- Itis shown in Sec. VIII that the results reduce in the limit
ductivity and volume viscosity of a low-density model fluid ?fba tHS tof thoste;] of Etn?_kog Iprowded (}nﬁ Sneglelcts lthe %)n-
of hard uniaxial ellipsoids have been predicfd®] through ributions irom the rotational energy of Hs molecules. ©n
an Enskog-type solution of the Taxman equation angthe other hand, if one retains these contributions, a first-order

thereby, the controversy and drawbacks of the TCF methodeified Eucken formula emerges for the heat conductivity

of calculations have been partially removed. Of course, th(?f a dense HS fluid. This formula is the outcome of the

diffusion coefficient and shear viscosity derived in Réf3] 'Uﬁ”“e'y slow exchangéela_stic cqllisionﬁ; between transla-
for the low-density fluid do agree with those predictedt|onal and rotational energies. Finally, Sec. IX presents nu-

through the TCF methofL6] merical results for the shear viscosity of uniaxial ellipsoidal
The Mori-generalized Langevin techniques utilized infdes using computationally convenient expressions given in

Refs.[15] and[16] have not so far focused attention on thethe Appendix.

study of transport phenomena in a dilute or dense model Il. COLLISIONAL FREQUENCY

fluid composed of a pure or binary mixture of rigid biaxial

ellipsoids. However, a modest beginning in this study Consider a low-density pure fluid composed of hard biax-
through the Enskog-type technique has recently been madal ellipsoidal molecules each of massand principal mo-
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at—d(—k) and hencef,(F) should be replaced bf;(F
—dy,), Wheredyo(—Kk) = p,(k) — 5(—k). Secondly, the vol-
ume of the molecules in a dense fluid is not negligible as
compared with the volume occupied by the fluid. As a con-
sequence, the effective volume in which the center of any
molecule can lie is reduced and thereby the frequency of
collision is increased by a factdf the pair distribution func-
tion, which must be a function only of.(—k)=F+ g(—Kk)
where the biaxial molecules impinge, and not of the velocity
of the pointP (by the assumption of molecular chao€on-
sequently, when a dense fluid is considered, the collision
frequency per unit volume

FIG. 1. Geometry of hard ellipsoid collisio is the center of
mass of the first molecule an@, that of the second oned,P L oa R A
5. andOP=5. ' ' V(T —kDF() F1(—dif — k)

- Xk-G1olepodkdédad dé; da (4)
ment of inertia tensot with components , (v=1,2,3). The 1A sedor S

inelastic collisions of a pair of such molecules are described ) )

by their support functionk andhy, the unweighted average EhOUIdl be l:jsid mstehad of E@). It Sh?jUIﬂ be not?d_thatl n g
(Zewor Of surface area element, per unit solid anglelk on gs.(1) and {4) we have suppressed the translational an

the volume excluded to the center of mass of the first molgggsls; g/reelsiciltles and time dependencef @ind f, for the
ecule when the molecules are in contact at a fixed orienta- Y-

tion, the unit outward surface normialon the surface of the

second molecule at the contact point, the translation-to- I1l. MODIFIED TAXMAN EQUATION
rotation-energy transfer functiob, and the one-particle lo-
cal distribution function$ (¢, w,f,t) andf(C,,w4,f,t) of the
first and second molecules at the vector posifi@md timet. The Taxman[11] integro-differential equation for low-
The functionf is defined in such a way th&{C,»,r,t)dCdw density fluid has the form

is the number density of the first type of molecule having

A. Calculation of (df/ dt)

.. . N . dilut
postcollisional linear and angular velocities, §) in the ve- ‘3_f+6_ a_in ﬁ_f: ‘7_f e )
locity space elemend¢de and f,=f(¢;,®,,r,t) is simi- at ar ac \at) .

larly defined in the elemerd¢, dw,. The definitions ofh,

hy, D, and({eor are given elsewhergsee Eqs(1), (14), .

(42), and (A28) of Ref.[18(a)]]. whereF represents an external acceleration acting only on
For a fluid at ordinary pressure, the frequency of inelastidhe center of mas® of the molecule. We retain this form of

collision per unit volume is givefl(b)] under the assump- the equation for a dense fluid. However, the expression for

tion of molecular chaos, by (af/dt)con, representing the rate of change due to collision
. . in a dense fluid, is not the same a&[t)2%". We derive
f(F)f (K- §1A {exordkdCd® d&; d, . (1)  below the expression fordf/at)., and call the resulting
) o ] equation the modified Taxman equation.
The relation between the postcollisional relative velogity Consider the frequency per unit volume of an inverse col-

of the point of contact of the two colliding molecules and the
corresponding relative velocity,, of the center of mas®,
of the second molecule with respect @ that of the first

lision whencek becomes-k; hence it follows from Eq(3)
that 5,,(—k)=—p,(k) andd;(—k)=—d;5(k). In such a

one, is given by collision, O, is atF+dy,(k), while the molecules collide at
R R oL r+ 5(&). Hence from Eq(4) the frequency of collision will
J12= VUt w1 Xp1—wXp. @ pe

Herev,,=¢C,—C, andp; andp are the vector positions of
the second and first molecules at the point of contact mea- v (¢ (k))f(c’,o’,7,t)f (€, &) ,F— dy(K),DK- GiA¢
sured, respectively, fro®; andO, and are given by24] ¢ vt 2 14 Lodor

o xdkdéde dé, de,
p#:[kMJrVkM]hM(yM,ZM), 3 o o A
i =Y (e (k) (M) F1(F—dyx(k))
wheren=1,2; h,=h, p,=p, andV, is the gradient opera- R A
a 2=1, P2=p e g P XK G Lo odkdEda de; da, ®)

tor with respect tdA<M. Also Rlz k=— Rz- The variabley ,
andz, are defined in Ref23]. A
Although we shall retain the molecular chaos assumption Consider an integral operat@r; which represents a four-
in the dense fluid, the frequency expression of @g.needs dimensional integral over the orientational coordinates of a

two modifications. First, becausg(Fig. 1) is atr,O4 will be pair of molecules and is defined by
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R 1 (27 (27 (11 where the “mobile” or “substantial” time-derivative opera-
O1W( 1, ¢2;21,25) = mjo fo jo JO d¢,d¢,dzdz, tor [1(d)] D/Dt is defined as

X (LodoW( b1, 2:21,25), 7) D_9d. .9
el nre Dt at 0 gF (149

wherew is any function of the orientational coordinates. It is

now possible to write the form of the expression for If one substitutes the expression fif?) from Eq. (11)

(9f1t) .o With the help of Eqs(4), (6), and(7). We thus get  corresponding to a nonuniform and unsteady state of the
fluid into Eq. (13), one obtains

af) R .

—| =2x(T)O fffk@dkdé do of 1 Dn

e, S 1. SO
coll

ot
XY (Fo(k) ' (F)FL(F—dya(k))

I +fOC.| VIn(nkgT)+(£2+ Q2= 4)VInT
SYERIOEHdR)] ©) (nkeT)+(& )
+kBT( Dt ) ! (19
- 1 . - kBT 1/2
9= 2x(T) G2, x(T)= m] ©) where the dimensionless peculiar velocityand the magni-
tude of the angular velocitﬁ of the first molecule are de-
B. Equation for f( fined by
If the fluid is uniform,Y, f;, andf do not depend om R 1 . 1 .
andp or p;, and Eq.(8) in this case takes the form = C, 0%= 0. 16
p Or py q.8) 3 V(™) SkaT (16)

of - N “
—) =2YX(T)01JJJ(f’fi—ffl)k-gd dé, day.
coll

at IV. SOLUTION OF THE MODIFIED EQUATION
(10

A. Second approximation to(@f/ dt) .y

This expression diffe_rs frqm the corresponding expression An approximate form of Eq(8) can easily be derived by
[11] for the low-density fluid only by the factor and one  Taylor-expandingy, f, andf} in powers ofj,, using Egs.
can easily shol(c)] that, in the uniform steady statehas  (3) and (9) together with the symmetry property of the op-

the generalized Maxwellian form eratorO;, and retaining only the first derivatives. It is then

Jm 3 1 L given by
f0=n (111,032 expg — =—=(MC?*+ 1 :6®)
2mkgT 2kgT ai , R ,
(11) E :Jl(r)+\]2(r)+\]3(r), (17)
coll

such that the number density temperaturd, mass velocity where
&,, and peculiar velocitlC (=¢—¢,) are independent af
andt. N , R S

When the fluid is not in a uniform steady state, a first- Jl(r)ZZX(T)Y(r)01J f f (f'f;—ff)k-gdkdc,day,
order approximatiori(®) to f is given by Eq(11) wheren, T, (18)

andc, are now functions of andt, and its second approxi-

mation f(@+ 1) js ) . <o -
Jz(r)=2X(T)Y(r)02fff(f’k~Vf1+fk~Vf1)

fO+fD=f0(1+ ¢D), (12)
Xk-v dkdc,da,, (19
where¢™ is a linear function of the first derivatives of T,
andc,. By substituting Eq(12) into the left hand side of Eq. and
(5), neglecting all terms involving products of derivatives or
denvz_itlves of second order, and using the definitiorCof Js(r)=x(T)ﬁY(F)-(ézf f f R(f'fi+ff1)
one finds that
of af® of @ 5f@ k-7 dkdé do )
(_ _HP L e o xk-v dkdé,da, |, (20)
at at ar Jdc
coll )
D 4 . o with
=fO —+¢. —+F. —|Inf®, (13 . .
Dt or aC O,w=0,w(h+h;). (21)
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The approximate form o8,(r) can be obtained by sub- approximated by- . Integration performed with respect to

stituting Eq. (12) into Eq. (18), dropping the products
PV and ¢’ D ;D as before, and using

fOF0= (0@ (22)
Then one can see that
Jl(F):ZX(T)Y(F)©1JJJR-@deéldcT)l
xFOFO(p' M+ g1 P =P —giP). (23

The expressions fal,(f) andJ;(F) involve space deriva-
tives; thus, in substituting Ed11) into Eqgs.(19) and (20),
one may drop the terms involving® and ¢, and re-
placef's by f(°’’s. Then one finds with the help of E(R2)
that

Jz(r)+33(r):2X(T)v(r)©2fffk-ﬁdkdéldazl

X fOFOk. VIn(f; Ofv), (24)
After substituting the values off{® and ;@ into
V In(f;91Y) of the above equation, we find that

Jo(F)+33(N) =2x(T)Y(F)O,

xfffﬂmfgom-ﬁwdéldal

AR v/ nZ 2 12 2 12
Xk-|ViIn Rl +(E1HE°HQT+ Q1)

. (29

N V2 . s =
XVInT+ 7Véo(r*,t)-(gﬁ &)

where €',Q') and ] ,Q}) denote the precollisional di-
mensionless translational and angular velocities of the two

molecules, such that.8,25

. Vakk-g . . vakkeg
&= o7 1251__D2_’ (26)
—)_ 1 - 2
U WESRELY (27)
0.-8.6, B-—(Ji;a8+I;bb+ Visce)
=B-w,, = aa CC,
" " \/m 1 2 3
L, - k-g
Qﬂ_wl‘:—zq’u?, (28)

and the expression far, appears in Ref.18(a)].

The &, &2, and Q}? of Eq. (25 can be expressed in

terms of&;, &2, 02, k-v, d;, andD? with the help of the
approximate forms of Eq$26) and (28) whenk- g there is

k using the standard methods described in R&f)] then
give

. Aw A
Jo(M) +35(1) = 7 x(MY(NO;

xJ J fOf0de,deow-V
n2

b V2 . o
XIn 55 +2§1U_W(ZUU‘§1+U &)

602 5\ .
W_’_ZQ]' v—3

2

+

vv

élle) .

1 5.
U2U'

* 5ps

It follows from Egs.(11), (16), and(26)—(28) that

1 O gz dm -1 2_02QdZ d0

U=5(§1_§), fi dCldwlzﬁqu_§1_Ql)d§1d91-
(30)

By substituting Eq.(30) into Eq. (29), integrating with re-

spect tof; and(};, and expressing? in terms ofD? since
D?=1+a3+a3, we get

4n ~
Jo(M)+J3(F) = — TX(T)Y(F)Ozf(O)

| L e S nmeyn+ LEFInT
V2 V2

1 - 2 ...
where
—3§2 ! 1 = £ 1 32
L7gp7 gp2 b feTprtapr (32

Now using Egs(23) and(31) in Eq. (17) we obtain the form
for (9f/dt) cop -

B. Evaluation of ¢

The integro-differential equation satisfied by the function
¢ can be obtained by substituting the value 6f/@t).
in Eq. (15) and using Eq(9). We thus get
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I(¢')=0, f J J R e A O

xk-§dkdé,da,

1 Dn 1DT n A1
N 1)) P 2 A — _fO)y—-1p —_VY(F
f {n o T(E£+07-3) = Dt} fOY-1(r) 1+5Y(r)0(52)]
0 > | 2D - 1 & 2102 oV, 0y -1/
—fONVI(T)E S x 2| =——F|+=—=Vpo X(E2+0%2—4)|C-VInT-2fOY"}r)
Dt nkgT
- n - 2n Y R 1
—f(o){x/i)((T)g- (§2+92—4)+§Y(r)og1H X 1+EY(F)O(F gg:v-c*:o—gf“’)v*l(r*)
- n A - A1
XVInT-2f© 3 Y(NOLV -G X 1+§Y(F)O(Eg)]
2n L L\ .s o 5 AE x
+11+ 2 Y(NO| 52| [ EE:VE, |, (33 X(&°—=Q)V-Co|, (39
where where the nondivergent tenségis defined by
~ ~ n 22 2z ¥t
0=270,, po=nksT 1+§Y(F)a> (39) Eé=¢E—3 U, (40

with U a unit tensor of rank 2.
The counterpart of Eq.39) for the low-density fluid, as
given in Ref.[1(c)], can be written as

and a= 0w with w=1.

If we multiply Eq. (33) by ¢ dCdw, where any summa-
tional invarianty is not a function off, and then integrate
with respect to€ and @, the left-hand side of the resulting
equation vanishes by virtue of the transformation described
in Ref.[1(e)]. Thus we have the result

J(pM)=—1O1(£2+02-4)C-VInT

o 1 .
+2§g:v.eo+§(§2—92)v.60, (42)

1 A1 -
ort3 3n+2n2Y(f)O F—l) V-6=0 (35
whose solution has the form
when =1, ¢V =— (A +A)V INT—2(B:VEy+BV-Gy). (42)
%_ E+ E§p0+ rg(_;-ry(r)©<§_ 1) =0 (36 Here,&1 and 5\3 correspond to the solutions o&{— 5/2)6
p and (Q?—3/2)C of Eq. (41) and their approximate forms as
I well as those of8 andB are given in Ref[1(c)].
when[1(f)] y=mC, and The solution of Eq(39) can at once be given in terms of
D 1in 7 A;, A,, B, andB by just looking at the solution given in Eq.
oin(nM+3 §Y(F)O(F—6 +4|V-6,=0 (37) (42 and by comparing the terms containi¥ign T, V&,, and

V.&, in Egs.(39) and (41). This yields the solution of Eq.

when [18)] y=1/2mC+(I)":C0). Using Egs.(34 3938
and(35) in Eq. (37), we get
ny.[1\|. .| -
pM=—-Yy"1 |1+?o(52) A+A,|-VInT-2Y"1
OT P 6 s virof = 1)6 Go=0, (38
Dt 3nkg " Cot 5 (DO 5z €0=0, (39) NI AR P
15 -\ D? Co
wherep=mn and the angular momentuhn=1 - . v 1
Equationg(35), (36), a_nd§38) are the first approximations +11+ n_@( 2) ] BV & (43)

to the equations of continuity, linear momentum, and energy. 3 \D

These equations reduce to the corresponding equations

[1(c),10] for a low-density fluid if the last terms of these \ pPRESSURE TENSOR AND THERMAL-FLUX VECTOR
equations are dropped together with thatpgfin Eq. (34).

On substituting the values of the mobile time derivatives of The pressure tenséi® and thermal-flux vectod(® of a

n, €y, andt from Eqgs.(35-(38) into Eq.(33), one obtains  pure low-density hard biaxial fluid are due only to the free
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motions of the molecules between collisions and their values 1 =
correct up to the second approximation are giverj y)] dk=5p(CC)

50— (G0 = G & [x1.0%.¢ 2T ny. [ 1 N

P©=p(CC) @ =nksTU~2[ ];6~[«],UV &, (44) :—%[5\(—1 1+?O<F a3y 1a,|§T
and

. 3nk3T . [ 1 R
7 — _ - ) =—|Y [\]1+ mo F (5a,,—3a;,) |VT.
ﬁ<°)=§[p(C2C)(°)+n(l)’1:LL=—[)\]1VT]. (45)
(52

Here

1 The quantitieP anddy are the parts oP andgq that arise

(- E—f f fO1+ M) (---)dEdd (46)  from the transport of linear momentum and energy by the
n motion of the molecules from one point to another. To these

o should be added the contributions arising from the transport

of the momentum and energy by molecular collisions. These

C?valuations will be done up to the second approximation in

Ssubsequent sections.

and € (=V¢, is the rate-of-shear tensor. Aldoy];, [«]1,

and[\], are the first approximate values of the shear an
bulk viscosities and the thermal conductivity of the fluid.
The expressions for these quantities have been derived in

Ref.[18(a)], and specificall
[ & )] P y VI. COLLISIONAL TRANSFER FLUX VECTOR

2

(] :kB_T(Sa +3a,) Let us consider the mechanism of transfer of a summa-
1 2m 1 2

tional invarianty across an element of ard&at the point’,
32T (Fig. 1). A collision between the molecules on the opposite
-8B — _ _3)2 sides ofdS transfers instantaneously only a partfirom
= [25a2,— 10(N—3)a+ (N—3)“asl, (47)

8mA one molecule to the other, such that a flow foccurs,

. ) ) although neither of the molecules crosses throdgh As
where the dynamically active degrees of freedNnn our  pafore. it is presumed that is not a function off.

problem are 6, and,; anda, are suitable constants of the

g In a collision between the molecules, the first molecule
equation

with velocities €,w) lies on the positive side oflS the
3 second one with velocitie<(,»,) on the negative side, and
02— Z|¢. 48 the unit vectoin is the outward normal drawn aSfrom the
5 (48)

negative to the positive side. Sinkés the unit vector at the

The right side of the above equation contains the firstooint of contactP in the direction of motion of the second

approximations to; andA,, and the values of, anda, molecule k- f is positive. ItOf)ig. D lies in a cylinder of
turn out to be area elementlS and lengthk- OO, with generators parallel
; 5 to k, the volume of the cylinder isk( A) (k- 00;)dS. If O,
31:E(5322_ 3a,), azZE(f%an— 5a,,), (49) gisgft:iremole.c.ule lies within this cyILn(ie[, ilf:olhsmn*wnl
. positions oD and O, aref.—p(—k) andr,
—p1(k) while 7, gives the position of impact of the two
molecules. Then by analogy with E@), the probable num-
ber of such collisions per unit time in whicld,®), (€;,®1),
andk lie, respectively, in the rangesi¢,d@), (d€;,da,),
Recently, the collision integrals;, a;»,, and a,, and and dk is given by
thereby the quantity\ ]; have been evaluated by [3(a)].
Now the kinetic contribution$5'K and g to the pressure A o
tensorP and heat-flux vectorj of the dense fluid can be Y(F)f(Fe—p(—k)F1(Fe—pa(k))(K- 1)
readily obtained from Eqg42)—(50). We thus get

I 5\ .
n(Aj+Ay)=a; gz—z C+a,

with

A=aja,—al, (50)

Xk-00; dS(LeporX k- GrdkdEdd d&;da, .

<

Py=p(CC)=| nkgT—Y?

ny.[1 .
1+ ?O(F)][K]NCO
In each such collision, a molecule on the positive side
. ony. (1 o gains a quantityy’ — ¢ of ¢ from the molecule on the nega-
xU-2Y"H1+—-——0 —)][n]le, tive side, whereys’ is the precollisional value of.. Hence
the total rate of transfer af acrossdSby collision per unit

(51 area per unit time is
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nde=@os [ [ [ [ [w-wte—i-ky  Ba=3viod.| [ [ [ [ -ttkkin

X f(Fo— pr(k))xk-A(k-O0)k- G1a xdkdéde dé,de,
xdkdédo dé,da, . 53 m . . -
w0 0C 0wy (53 I §Y(Fc)03f j f j f (C’—C)f<°)f<1°>v
Here, integrations are over all values of the variables such £(0)
thatk- g andk- i are positive; andicy may be defined as the XIn W) k(k-7,,)dkdéde dé,dad, (57)
collisional vector of flow ofi. fy

The restriction onk-f is inconvenient and may be by-

passed as follows. Let us change the variab&s) in Eq. The approximate form o€’ —C from Egs.(9), (16), and
(53) to (,,@,). This is equivalent to exchanging the roles (26) is
of the colliding molecules. Thuk, g, and ¢'—¢ are é’—ézﬁ(kﬁlz)/Dz, (58)

changed, respectively, to-k, —¢, and b= =~ (y'
— ). With this interchange) - /cr remains invariant but the - \herek- g, , is approximated, as before kov;,. By substi-

integrations are now to be carried out over all the variable§uting Eq.(58) into Eq. (57) and then executing thk inte-
such thatk-g;, is again positive buk-f is negative. It is  grations by the standard techniqiiéa)], one obtains

then straightforward to show that
mm_ . (1 .. 5 =
o1 A A Per=75 ()02 52 JJJJff1(2012012+U12U)
ﬁ-tﬁCT:EY(Fc)Olffffj(tlf’—zlf)fl(Fc—ﬁ(k))
m R
) Xdéd&déldc31+7;—4Y(Fc)O3
1 0)fOH2 A dE Ao
F f fl ddedCldwlvlz

R f(O)
{‘712'“”(@)

XF(Fe—p(—

xk-f(k-00;)k-g,dkdédd déde,, (54 «

where the integrations are over all values of the variables
such thatk- g is positive. X
As in Sec. IV, if we do the Taylor expansionsfaindf,

(D12012+ U)

use the definitions ofj;, andp, from Egs.(2) and(3), and _fO R (0)
retain only the first derivatives, we find that + [ Vin @)]Jlﬁ U1,V In @” (59
-1 . A . — . . .
l/’CT:EY(FC)OZf f f f f (' — ) ffk(k-T10) Since the average valug of any functiong is defined by
xdkdéde déde, nazf f f¢déd(5:f f f1,dEde,,
+ EY(F )0 (' =PtV In 2 _ @ andG. &
2 o/ vy 1 v1,=C;—C, andC,=C=0, the value of the first term on
() the right-hand side of Eq59) becomes
X W) k(k-v,p)dkdede déda,, (55) 2amre (1) e
1 ——Y(f.)O,| =% |(2CC+C-U). (60)
15 D
where

Further, one can see from E@.1) that

03=0,(h)=0;(h+hy)h. (56) £(0)

Vi _ 2
v |n(@> —W[m(ctcl)

VIl. TRANSPORT COEFFICIENTS OF THE DENSE
FLUID +
A. Viscosities
_ (61)

The collisional transfer contributioRct to the pressure ) ) ) )
tensor® may be derived from Eq55) by setting=mC If Eq. (61) is substltuEed into the second integral of Eq.
=m(¢— &), whereé, is evaluated at the point, and does  (59), the terms involvingv T identically vanish because each
not vary with the position of the molecule. Then E§5) of these is an odd function of or él, and the second
becomes integral term of Eq(59) becomes
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sz £O)£(0) 1
- 24kBT 0)03 f f f J f dCd(l) dCld(Dl PO nk8T 1+ Y(YC)O 52
X014 (V012010 (D150 15+ G)+{(€50.512)512 and
. S a - 2n A1
AV T} (62 oty ! 1+Ev<mo(F”

The integrals of the above equation can readily be performed
by changing the variable§ and ¢; to G, and v;,, where
Go=(C+C,)/2, and then Eq(62) becomes

[«]1- (68)

1+ = Y( C)O( )

It follows from Eq. (35 that the extra term, i.e.,
—w'V-Cy, of Eq.(67) differs from zero whenever the den-
(63 sity of the fluid is varying; it represents a volume viscosity
similar to that{1(c)] of a dilute fluid, and opposes expansion
where or contraction of the dense fluid. The deviationPofrom its
hydrostatic part is shown in the last two terms of E6f)

) o
n LA and can be equated to2 7’ €, wherer' is the shear viscos-
@p=—g (TMksT)*¥(7)Os y 7 7

1
F)' (64 ity of the fluid. Thus

The expression foﬁm of Eq. (59 can be obtained by n'=Y"
adding the contributions from Eq&0) and(63), and, if one

adds to this sum the expression feg from Eq. (51), one

gets the final expression fé*, which arises from the colli-
sional transport of linear momentum as well as the transport

15

) 2n K 3
1+ = Y(r C)O( [n]1+§wD- (69)

B. Thermal conductivity

The collisional transfer pagt of the heat-flow vectogq

of molecular motions. It is may be obtained by taking=(mC?*+ I":6&)/2, whereC is

still the velocity of a molecule relative to the mass velocity
B= |5’K+ ﬁCT Co of the fluid at the specific point.. Then we have from
Eq. (55
dmn . [ 1 \1== R - -
=p 1+—15 Y(Fe) 2| p2 CccC Jcr=dcmitdcr (70)
with
(70| | U sl &+ U e
15 Y(Fd)O2| 52 @ol s E+UU:VCo]. qCTl— C)f f f ffo||<o|co|wolcldwlo2
(65)

X{Qffy(C'2—C?)}

On substituting in the above equation the valueSpéfC £(0)
from Eq. (51), that ofO from Eq.(34), and using the kinetic O3{ Qf OFV In( )(C'Z Cz)] (71)
theory definition[1(g)] of temperature, it takes the form
and
P (P +Y Y1+ znvb 1” 1
= —{ ™ —_— ~ Py
o 15" 7\D? qmzzv(rc)f f f f f dkdéda dé; de,0,
n .(1 . e
X 1+§YO<52) [K]l}V-co) X{Qff 1 (0" 0 —&d)}

(. £(0)
+o3er<°>f VIn( (O))| (0'w —ww)] (72)

2n 1 °
1+—Y(fc)0<—z” [77]1]§

(66) whereQ=k(k-v,).
The integrations injcrq can be performed in the same
. way as those in Sec. VII A, and the integralsggr, can be
If the fluid is in a uniform and steady stat€é,; ¢, and&  similarly executed by utilizing E(28). On carrying out the
are zero and® reduces to the hydrostatic pressitg Fora ntégrationsdcr, tumns out to be zero and so
fluid not in a uniform steady state, the hydrostatic pressure mm2 o 1\— R
becomes Ger= qClel_oY(Yc) O(Dj) C?’C-wp(c,)y VT,

(73

where the specific heat(), per unit mass due to the trans-
where lational motion is &g/2m. To this ot we must addjk of

- |6

Po—w'V-E, (67)
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Eq. (52), which gives the rate of transport of molecular mo- 27, 4 Vor 4 .
tions, and the total thermal-flux vectdgris given by nkgT| 1+ =-no Y(ff)) — g (mmkeT) " n"a™Y () V- Co.
(76)
i= 2114 Dvir)6 1)% (C,)e¥T
aqa=3 zrr n2 —w@plCy .
2 5 - ¢7ID? SO Also, 7' of Eq.(69) reduces to the corresponding Enskog HS
(kéTY—l . nY 5 1 result
% g (rC) 52 1/2] 3 2
(kaT) [ 5 v o) 1+ 4dmno )
n . 1 2 g g
X{5|1+ gY(Fc)O<F a;+3a, ) m 160 15
+ 2T gy 7
XVT—wp(C,) VT 15" oY) 77

=-[VLVT (79 because the value ¢fp]; given elsewherg¢see Eqs(53),

) ) (54), (59, and (62 of Ref. [18@]] becomes
Thus at any temperature the first apprQX|ma[|.mh]1.to the (5/1602) ymkgT/7. However, in the appropriate limit of a
thermal cond_uctlwty)\’ o_f_the dense fluid is given in terms  jense model fluid of uniaxial ellipsoids, this formula does
of that at ordinary densitiels\ ], by the equation not reduce completely to the corresponding fornj@@] de-
rived through the TCF method as given in E§3) of Ref.

2 [16(f)]. The first term of Eq(69) does and the second one

BT

n R
1 P 1 _ R _
[A]= m Yoo 1+ 5 Y(Cc)o( DZ” does not reduce, respectively, to the second and first terms of
Ref.[16(f)]. We think that this difference between the shear
n_ . A1 viscosity formulas for the fluid derived through the TCF and
X151+ EY(rC)O(F 2,138, [ T @p(Cy)y our Enskog-type theory is the result of treating the collisional

) transfer effect differently in the two theories. This sort of
1+ EY(F )é(i)HYlD\] n 3nkgT @(i) discrepancy has also been seen in the viscosity results for a
5 V¢ D? 17 8mA D? dense HS fluid derived through the EnsKdga)] and TCF
[5(a)] techniques.
Discussion of the limiting behavior i’ ]; of Eq.(75) is
X (582~ 3a12)} T @ (Cy)y- (79 interesting and requires some care. Chapman and Cowling
[1] ignored the rotational kinetic energy of the molecule
In Ref. [18@)], the expressions fof7], and [\], are throughou'; their_study of the kinetic theor_y of HS fluids and,
given in terms of various collisional integrals over the four therefore, in their workN =3, which takes into account only
orientational coordinates of a pair of interacting hard biaxialtn® translational motion of the molecules. For this case the
molecules, and the numerical procedure for their evaluatiofi"St €quation of(75) becomes

is also given. Two extra collisional integraf3;(1/D?) and

~ 2 3 2

O(1/D?) that appear in Eqg64), (69), and(75) are of the SkeT 1 2mno (HS)

same typdsee Eqgs(7), (34), and(56)] and can be similarly 2m Y o)) 1+ 5 Y(o)] art®p = (Colu,
executed. An approximate formula for the contact pair dis- (78

tribution functionY(r;) has been proposed by Song and Ma-
son[26]. Thereforew’, 7" and[\']; of Eqs.(68), (69) and  pecause it follows from Eq48) thata, does not figure in

(795 can be estimated numerically. Eq. (75 for N=3 and from Eq.(76) w!!® is equal to
(4/9)ymmksTn2a*Y (o). It can also be seen from E¢§3),
VIIl. TRENDS AND LIMITING BEHAVIOR (54), and (64)—(66) of Ref. [18(@)] that for a HS a;;

=80?%\mkgT/Im, a;,=0, and a,,=60?\mwkgT/m. Thus

The results in Eqs(34) and (67) give, respectively, the _ N T T
values for the hydrostatic pressipg of a dense hard biaxial Ir708r)nreEc?us é((aiggoi?g (Ig?\)sl?ég I(—IJ-S,S/r?éZS[LI?[ m/mkgT and Eg.

fluid that is in a uniform steady state and the presfge
—w'V-Cy if the fluid is not in uniform steady state. First
approximationsy’, w'’, and[\' ], to the shear viscosity, bulk 7_5kB(kB_T> 1/2Y1(0)( 14 2mno? V(o)
viscosity, and heat conductivity of the fluid are given, re- 640 | 7m 5
spectively, by Eqs(69), (68), and(75). (79
For a pure fluid of hard spheres of diameterwe have
D=1, (Sepa=02% O(1)=2mc3 O3(1)=c¢*4, and the However, for N=6, [\]; of Eq. (47) is equal to
contact pair distribution functiol () =Y(o). Hence for a  (3k3T/8m)(25/a;,+9/a,,) and finally reduces to
pure and dense HS flui®, reduces to the correct result (111kg/6402) kgT/7m when the HS values of;, a,,
nkeT[1+(27/3)no3Y(o)], andPy—w'V-E, of Eq. (67)  anday, are utilized. With this HS value df\],, the second
to the Enskog resultl(a),27] equation of(75) for N=6 becomes

2
HS
+m§) )(Cv)tr .
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TABLE I. Values of the shear viscosity for uniaxigprolate ellipsoidal fluids. KT, kinetic theory
(calculations from our theojy MD, molecular dynamicgsimulations by Allenet al. [16(f)]); TCF, time
correlation function(theory of Allenet al. and calculations in Ref16(f)]). “Ours” implies calculations in
this work using expressions as mentioned in the text.

7' (KT) 74 (MD) 7 (TCF) 70 72" (TCB) 2" Cy
c/a  ningp Ours Ref.[18(f)] Ref.[18(f)] Ours Ref.[18(f)] Ours Ours
2 0.3 0.3162 0.373) 0.3621 0.3534 0.1745 0.1657  0.1286
2 0.5 0.9204 1.1%) 1.1431 1.1004 0.8456 0.8031 0.6231
2 0.7 3.1290 6.@) 4.0125 3.8433 3.3554 3.1865 2.4722
3 0.3 0.2833 0.4@) 0.3885 0.3697 0.2341 0.2154  0.1290
3 0.5 0.8648 1.246) 1.3719 1.2815 1.1290 1.0387  0.6220
3 0.6 1.5672 2.B) 2.5664 2.3883 2.2247 2.0468 1.2257
5 0.2 0.1637 0.2@) 0.2646 0.2393 0.1595 0.1341  0.0586
5 0.3 0.2963 0.4®B) 0.5915 0.5174 0.4665 0.3925 0.1714
5 0.4 0.5575 1.00) 1.2406 1.0691 1.0797 0.9083  0.3967
10 0.2 0.1957 08) 0.7019 0.4571 0.6294 0.3847 0.1232

K31\ 2 2mno 157no ment with the MD than with our results foy'. In order to
(ﬁ ( 5 Y(O‘)) (WY Yo)+ 3 analyze this irregular behavior, we have obtained in the Ap-
pendix[Eq. (A18)] a computationally convenient expression
+m§3HS)(CU)tr- (80)  for Eq. (33) of Ref.[16(f)] and calculated the corresponding

values shown agy (ours in Table I.

For a low-density HS fluid, one can drop those terms from It can be seen from Eq$A8) and(A18) that bothz' and
Egs. (79) and (80) that depend om and takeY(o) to be 5/ consist of two parts, the first part having the same expres-
unity, and then the equations reduce to the Eucken and modijon. However, the second parts, i€, and 9™, of these
fied Eucken formula$l(c),18(@)] correct up to the first ap-
proximation. This reduction suggests that EF%) and(80) us are consistently lower than the TCF values of RES(f)]

can be called the first-order Eucken and modified Euckerﬂ)ut the irregular behavior described above gets slightly

formulas for a dense HS fluid. In a separate communicationSmoothed out. The possible reasons for the difference be-
we shall redo the Chapman-Enskog transport theories of d%- ' P

lute as well as dense HS fluids by including the rotational ween KT gnd TCF_ results have peen expounded in the pre-
energies of the molecules and directly derive the first-ordeVi0US Section, but it seems puzzling that the valu_e37i¥f“
modified Eucken formulas for dilute and dense fluids. calculated by us using EGA17) in conjunction with Eq.
Equations(35)—(38) of continuity, linear momentum, and (A16) are at variance with those reported by Allehal.
energy reduce to the corresponding equations of HS fluidglthough we have used their expression #Gt", albeit re-

two equations are different. The values gf calculated by

with N=6 andD =1. written in an explicit form. One sees from Table | that for a
givenc/a andn/ncpthe numerical value for#4' —C,) is the
IX. NUMERICAL RESULTS AND DISCUSSION same as that forfy— 72™) calculated using TCF and re-

) ) ported in Ref[16(f)] or calculated by us using Eq6A16)
We have computed the zero-frequency shear viscosity fogng(A17). Hence the disagreement between the values of the
fluids consisting of hard prolate spheroids takimg=ksT  shear viscosity calculated by us and those reported in Ref.

— ; ; 3_q42
=1 and expressing lengths in terms lofwherel®=8a’c  [14f)] is solely due to the difference in the expressions for
with a andc the semiminor and semimajor axes of a prolate sym

molecule of massm. In | units, we havea=(1/2)(1 Cyandz;
+e.) Y6 and c=(1/2) (1+ €.)*3, where e.=(c/a)’—1 is Formula(68) for the volume viscositys’ of a dense fluid

the anisotropy parameter. Also, the close-packed densitof hard biaxial ellipsoidal molecules is the sum of two terms:

Nep=1/(4v2a%c) is nowﬁ. ' %e first is the viscosity term arising due to the collisional
CPThe values ofy’ obtainéd using Eq(A8), which is an transfer and the second is entirely due to fast exchange of

explicit and computationally convenient version of E69) energy between the rotational and translational motions. This

obtained from our kinetic theoryKT), are presented in ;a}i(ch?nge ',S yﬁry tSIOW tfqr tr;}early srr:jototh moldert:ﬁles a_rllld,
Table | for the axial ratiox/a=2, 3, 5, and 10 at various ereforé,m will not contain the second term and there wi

density ratiom/ncp. The corresponding results obtained by be two different temperaturds(c) 3] characterizing the ro-

Allen et al. [16(f)] using molecular dynamic@/D) simula- tational and translational energies. The first-order expres-
tions as well as TCF calculations are also shown for comﬁ'qgs f]?r thelshear V"?]C?]S't)é abr)d helat C(I)ndulctlwty ofba den_se
parison. Our values ofy’ are consistently lower than those uld of nearly smooth har |aX|a. mg ecules can be esti-
from the MD results of Alleret al.[16(f)]. The TCF results majed from our work by approximating’=v and Q,
from Ref.[16(f)] are lower or higher than the corresponding =(,, but the transfer functiod # 1. Under these approxi-

MD values without any definite trend, but are in better agreeimations, the collisional integrala,; and a,, of Eq. (47)
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reduce toa;;=5kgT/2[\]; anda;,=0, and the equation be- 1 (1
comes 0O 57 =270, 57
. (hy+h,
KT (25 6 61 =204 —p2
8m i 8 27 (27 (1 (1
=~ f f f d¢1d¢2d21d22
o Jo JolJo
The linear velocity and angular velocity parts of the col-

lisional integral can easily be executed by the modifi8] X{ L) h1+ h, (A1)
Hoffman technique. The result will be different from ours e

used in this paper. The formul@1) may be called another
modified Eucken formula for the heat conductivity because
the values ofy; anday, of Eq. (81) will be different from  and
those[1(c)] of the original modified Eucken formula. We
shall present a detailed analysis of this formula in a separate
communication. The contribution of correlated multiple two-
body interactiongchattering collisionshas not been incor-
porated in our work.

We have compared our numerical results #grwith the
values of Allenet al. [16(f)] which in turn are the improve-
ments over the values of their earlier calculations
[16(c),16(e)]. We have not made any attempt at a compari-
son of the numerical values pi’]; obtained using Eq.75)
with the corresponding molecular dynamics simulation re-
sults of Bereolo%t al.[16(c)] as improvements of the latter
are also requirefl13]. Our results in Eqs(68) and (67) for
w’ and the hydrostatic pressuPg— 'V - &, will await de-
tailed testing until simulation studies of these quantities ar
carried out. The transport coefficient results of this work ca
be extended to derive semiclassical formulas for the coeffi-
cients of a real dense polyatomic fluid in the same way En-
skog extended his results for a dense HS fluid to real mon-
atomic fluids.

The result§15] for the first-order transport coefficients of
a dense fluid of nearly smooth polyatomic molecules cannot
be easily compared with ours because the exchange of en—

ergy between the translational and rotational degrees of fredV€réz: =
¢ unit vector along the symmetry axis of tjgh prolate spher-

dom is fast in our work while it is slow in the problem o

nearly smooth molecules. oid.

~ 1
wWp= O 52
ha(hy+hy)

5
3

—5P© h 5P©

3 T3 1 D2

" 2477 fzwfhf f d¢1dpydzdz,

(h1+h2

X (Lexdor , (A2)

SvhereP = (8/15)\/n?Y(F,) with Y(F,) the contact pair dis-
"tribution function. Furthermore, we have

H
h,=—="(1+e) ™" (A3)

_ 27172
" H’u—(l-i-eCZM) ,

is the

k-€, andz,= —k-&, with ©=1,2. Also,¢,,

From Egs.(2), (14), and (A28) of Ref.[18(a)] together

with the substitutione,=
aged excluded volume surface element per unit solid angle
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APPENDIX: SHEAR VISCOSITY OF UNIAXIAL
ELLIPSOIDAL FLUIDS

Here, we obtain computationally convenient explicit ex-
pressions for the zero-frequency shear viscosity for prolate
spheroids from our Eq69) as well as that from Eq33) of
Ref. [16(f)]. All expressions are in unitsn=kgT=8a’c
=1 as prescribed in Sec. IX.

First we consider;’ from Eqg.(69). With the help of Egs.
(7), (22), (34), (35), and(64), and denoting the support func-
tion h of the text byh,, we can rewriteD(1/D?) andwp of

Eqg. (69) in the forms since

1 27 (27
<§ex>or5mjo 0 §e>&d¢1d¢2

1
=71+ 0™ fat i
+(1+GC)_1/3 1+(1+ L2
e, | TR
1+e.\?
+ H,H, (A4)




PRE 62

I [l |
{ex™ ( €c) H, H, ﬁf ﬁg
1
—-1/3
+4H1H (1+e)
x[1-(1 ! Lt e)” in?
(1+eo) Hi+H% H,H, SiN® ¢ 45,
(A5)

where ¢4, is the angle between the projectionstqfand¢,

in the plane perpendicular a
The translation-to-rotation energy transfer functibnis
obtained from Eq(42) of Ref.[18(a)] written as

2

>

w=1

2
Cc

2+ e

5
29>
D=1+ >

z2(1-22)
7
H,

€

(AB)

The shear viscosityz], of Eq.(69) for low-density fluids of
prolate spheroids is given in E@68) of Ref. [18(a)] and

reads as
15 101 5 2\]°*
[77]1=<ﬁ)“’0 JO dzld22<§ex>or(5_ ﬁ” :
(A7)

By substitution of Eqs(Al), (A2), and(A7) in Eqg. (69), we
finally obtain the expression fop’ for a dense model fluid
consisting of hard prolate spheroids as

154, ,
n'= (1+By)°+Cy (A8)

16\

with

11 5 2\|1
Alz[Y(rc)fo J‘Odzld22<§ex>or<5_§” ' (A9)

12n7r l+H2
Bi= (w)Y(rc)ffdzlez@ex)or ,
(A10)
and
n2\m +H
c1=(m)v(rc> [ dzldzz<§ex>or( 2) .
(A1)
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has also been utilized in the above reduction. The quantity

vy, Oof EQ. (A12) is defined in Eq.269 of Ref. [16(f)] in
terms of the collision frequenc¥; the expression foZ as
mentioned in Ref[16(c)] and derived in Refl18(c)] is

111
Z=4n\mY(F,) fo Jodzld22<§ex)orD, (A13)

which helps in rewritingv,, of Ref.[16(f)] in the form

16nym

Vo= 1—5Al (A14)

The form of 2™ of Eq. (A12) is given in Eq.(20) of Ref.
[16(f)] as

Sym__

oo

( nz ) 1 3r2+(k-F)? (A15)

Our evaluation yields

3r2+(k-F)2=(H;+Hy)2%(1+e) Y3+ 2 (1+e) 1B

2
eg[ > ZA(1-Z2)H2)H,?

X
2
H1H2 2+cos¢>12]_[ (1-25)" 1’2) }
(A16)
With the help of Eqs(A13) and (A15), we get
sym_ n2 [t 1 27
/B 30V C)fodzlfo dz, o d¢z
x%"x[srzﬂk-r)z]. (A17)

As q,, has been shown to be equalBg of Eq. (A10), we
can write the final form of Eq(A12) with the help of Egs.
(A14) and(A16) as

15A;
6= (1+Bl)2+ ™,

16\

It may be noted by looking at Eq§A8) and (A18) that the
first term of ' is the same as that of. But the second
terms, i.e. Cl and»>¥™, are different, although both contain

(A18)

Next, we consider the expression for the shear viscosity a#e factorn?.

given [28] in Eq. (33) of Ref. [16(f)]. This reads in our
notation as

=—(1+q )2+ pm (A12)

In our computations, we have used the corredi2d|
Song and Masoh26] formula

2
1=yim+yom

, (A19)
1- 73

Y(re)=

with the form ofg,, given in Eq.(29) of that reference. In the where 7, =4ma’cn/3=mn/6 is the packing fraction,

prescribed unitsq,, reduces tdB; of Eq. (A9) becauséi-
of [16(f)] is in our notationk-F=(H+Hy)/2(1+ e)e.
The definition of(- - -). given in the Appendix of Ref.16(f)]

1+6a+3a?

n=3 T, (420
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and 1 —75 1+
R=—{1+e&”31+——12k< ”ﬂ C(A22)
2 2+2.635n+7a? A1 4 27 \l-m,
Y=o 1+3a ' (A2D) in~1
S=T(14e) 114 02 (A23)
. _ B . — A C S
with a=RY3V. The expression9,3( for the average ra 2 noN1— 7>

dius of curvatureR, surface ared5 and volumeV for a
prolate spheroid withy,= \e./(1+ €;) are here given by

andV= /6.
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