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Kinetic theory of dense fluids of rigid biaxial ellipsoids
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The transport equation for a one-particle distribution functionf of a pure and dense fluid composed of hard
biaxial ellipsoids has been derived by the Enskog method through a modification of the Taxman equation
which describes the corresponding low-density fluid. The equation forf has been utilized in obtaining approxi-
mate equations of continuity, linear momentum, and energy of the dense fluid, and has then been solved
through the Enskog infinite series expansion technique, and a second-order approximate formula forf has been
achieved. Using this, results are derived for the hydrodynamic pressure, shear and bulk viscosity coefficients,
and heat conductivity of the fluid. Fast exchange of energy between the translational and rotational motions is
assumed throughout the calculation. The quantities ultimately appearing in the results, which cannot further be
reduced analytically and require numerical evaluation, are the four-dimensional quadratures over the orienta-
tional coordinates of two interacting rigid ellipsoidal molecules. In the appropriate limit, all results reduce to
those obtained by Enskog for a dense fluid of hard spheres, and a first-order modified Eucken-type formula for
the dense fluid emerges.

PACS number~s!: 05.20.Dd, 05.60.2k
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I. INTRODUCTION

The Boltzmann transport equation@1# of a low-density
pure fluid composed of spherical molecules was derived
Boltzmann more than a century ago and is based on
assumptions that collisions between molecules are str
binary and that successive collisions are uncorrelated~mo-
lecular chaos assumption!. Enskog@1# had obtained norma
solutions of the equation through an infinite series expans
method and derived fairly accurate expressions for the tra
port coefficients of hard-sphere~HS! fluids. Throughout their
work both Boltzmann and Enskog neglected the internal
ergy of the molecule because the encounters between
molecules are elastic and therefore interconversion of in
nal and translational energies is not possible. Ens
@1~a!,2–4# modified the HS Boltzmann equation in a wa
that extends its range of validity to considerably higher d
sities; this is now known as the Enskog equation. The
skog theory retains the two basic assumptions used in
derivation of the Boltzmann equation and corrects for
finite size of the colliding particles in two important way
First, account is taken of the fact that at high densities
collision frequency is modified by the excluded volume
fect, and secondly instantaneous collisional or interactio
transfer of translational energy as well as linear momen
is incorporated into the theory. Enskog solved his equa
through the procedure that he had adopted in solving
Boltzmann equation. He obtained modified values for
viscosity and heat conductivity coefficients of the dense fl
and found that collisional transfer significantly changes
values of the coefficients from those of a low-density flu
At moderate densities, the values of the coefficients ag
very well with the results of Alder and co-workers@5~b!,5~c!#
obtained through molecular dynamics HS simulation. E
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skog further suggested how the transport coefficient res
can be applied in obtaining semiemperical formulas for
coefficients of real dense fluids.

Although both the Boltzmann and Enskog equations h
an impressive list of very successful applications, their de
vations are based on intuitive ideas of Boltzmann which
not depend in a rigorous manner on the laws of mechan
However, the theoretical foundation of the Boltzma
equation was first laid out by Bogoliubov@6# and then by
others @7#. The Bogoliubov-Born-Green-Kirkwood-Yvon
~BBGKY! equation was first derived from the Liouvill
equation, the generalized kinetic equation was then obta
from it by using the assumption of generalized molecu
chaos@4#, and finally the Boltzmann equation for a HS flu
was derived. Hollinger and Curtiss@8# and others@9# moved
further and derived from the Liouville equation the Ensk
equation or equations consistent with it and found that
Enskog equation is correct. Thus, the theoretical basis of
Boltzmann and Enskog equations was firmly established

A semiclassical treatment of the first-order transport co
ficients of a low-density fluid of molecules with internal e
ergy, allowing for exchange of energy between the inter
and translational degrees of freedom, has been given
Wang-Chang, Uhlenbeck and de Boer~WCUB! @10# and its
classical counterpart has been studied independently by
man @11# and Curtiss@12#. In the classical method, both th
translational and internal degrees of freedom are treated c
sically while in the semiclassical one the internal energy
considered quantum mechanically. Obviously, the enco
ters between the nonspherical molecules are inelastic and
transport equations of the one-particle distribution functiof
derived by the above mentioned workers are based upo
heuristically derived generalization of the Boltzmann equ
tion. The WCUB, Curtiss, and Taxman equations have b
given a common name as the generalized Boltzmann~GB!
equation. The various formulas for the first-order transp
coefficients of a low-density fluid of asymmetric molecul
have been derived by solving the GB equation either by

n-
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Enskog method@10,11# or by a variational procedure@12#.
Recently@13#, a minor error has been detected and remo
from the collisional integrals~CIs! of the coefficient formu-
las obtained through the Enskog technique. Curtiss
Dahler @14# have given a systematic statistical-mechani
derivation of the classical GB equation from the generaliz
Liouville equation by using the technique that Hollinger a
Curtiss@8# had evolved in deriving the Enskog equation fo
dense fluid of HS molecules. A generalized kinetic equat
@15# for f and a generalized Langevin equatio
@16~b!,16~c!,16~f!# for time correlation functions~TCFs! of a
dense fluid of polyatomic molecules have also recently b
obtained from the Liouville equation, and the resulting eq
tions have been solved to obtain formulas for the frequen
dependent transport co-efficients of a dense model fluid
hard uniaxial ellipsoids~spheroids!. The results for the coef
ficients obtained through the solution of the generalized
netic equation are very complicated. However, in the limit
hard spheres, the zero-frequency results yield the co
sponding Enskog expressions for the coefficients.

The frequency-dependent formulas for the transport co
ficients of the dense model fluid predicted through the T
method and discussed in Refs.@16~b!–16~e!# are controver-
sial and far from complete. The zero-frequency shear visc
ity formula obtained through the method consists of the s
of two terms. One term is the same in Refs.@16~a!–16~f!#,
but the other term in Refs.@16~b!–16~e!# differs from that of
Refs.@16~a!# and@16~f!#, although the two different viscosity
formulas given in Refs.@16~b!–16~e!# and in Ref.@16~a!# as
well as in@16~f!# reduce in the HS limit to the correspondin
Enskog formula@1~a!#. It is stated in Ref.@16~f!#, of course,
with a measure of justification that the formula given in Re
@16~a!# and @16~f!# is far superior to that of Refs.@16~b!–
16~e!#; however, the predicted values obtained through t
superior formula do not agree even qualitatively with sim
lation results available for different densities. Furthermo
the frequency-dependent thermal conductivity expressio
Refs.@16~b!–16~d!# for the fluid is inappropriate because i
zero-frequency results for the dilute as well as for the de
model fluid fail to reduce in the appropriate limit to the H
Enskog formula@1~a!#. The TCF method has not yet bee
applied to obtaining an expression for the volume viscos
of a low-density model fluid and, therefore, it has not be
possible through this method to predict a correct formula
the hydrostatic pressure of a dense fluid that is not i
steady state.

Different zero-frequency expressions for the thermal c
ductivity and volume viscosity of a low-density model flu
of hard uniaxial ellipsoids have been predicted@13# through
an Enskog-type solution of the Taxman equation a
thereby, the controversy and drawbacks of the TCF met
of calculations have been partially removed. Of course,
diffusion coefficient and shear viscosity derived in Ref.@13#
for the low-density fluid do agree with those predict
through the TCF method@16#.

The Mori-generalized Langevin techniques utilized
Refs.@15# and @16# have not so far focused attention on t
study of transport phenomena in a dilute or dense mo
fluid composed of a pure or binary mixture of rigid biaxi
ellipsoids. However, a modest beginning in this stu
through the Enskog-type technique has recently been m
d
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and the zero-frequency transport coefficient formulas
low-density model fluids have been predicted@18#. In the
appropriate limit, the exact first-order formulas@16~a!,16~b!#
derived through the Enskog-type solution of the Taxm
equation reduce to those@13# of a dilute fluid consisting of
hard uniaxial ellipsoids.

The first objective of the present investigation is to d
velop an Enskog-type transport equation for a pure and de
model fluid consisting of rigid biaxial ellipsoids based on t
Taxman or classical GB equation of the low-density flu
this is described in Secs. II and III. There are two reas
behind choosing this model: First, this model and its simp
fied form, a hard uniaxial ellipsoidal fluid, are good referen
@17# systems for the study of the thermodynamic and tra
port properties of nonlinear and linear polyatomic fluid
Over a range of eccentricities, these models form nem
and, in some cases, smectic liquid crystal phases and
currently being studied@13,18–22# by analytical and mo-
lecular dynamics simulation methods. The simulation stud
suggest that the formation of a liquid crystal is, to a lar
extent, an anisotropic excluded volume effect. Secondly,
collision cross section for the inelastic collisions of th
model molecules can be calculated exactly because the
ometry of the molecules is now well understood@23,24#, and
thereby a complete analysis of collision problems can
performed.

The second purpose of this work is to derive formulas
the viscosity coefficients and heat conductivity of a den
fluid. In order to achieve this we first obtain in Sec. IV
normal solution of the modified Taxman equation, derived
Sec. III up to the second approximation, by the stand
infinite series expansion technique of Enskog. During
course of the solution, we found a formula for the hydrosta
pressure and also three equations which are, respectively
first approximations to the equations of continuity, line
momentum, and energy of the fluid. The pressure formul
valid provided the fluid is in a uniform steady state. T
solution has been utilized in Sec. V for deriving results f
the pressure tensor and thermal-flux vector that arise du
free motions of the molecules. Section VI deals with t
collision transfer flux vectors, and in Sec. VII first-order a
proximate results for the transport co-efficients have b
achieved, the outcome of the various fluxes generated f
the motions of the molecules as well as from the instan
neous transfer across the distance separating the cente
two colliding molecules momentarily in contact and statio
ary.

It is shown in Sec. VIII that the results reduce in the lim
of a HS to those of Enskog provided one neglects the c
tributions from the rotational energy of HS molecules. O
the other hand, if one retains these contributions, a first-o
modified Eucken formula emerges for the heat conductiv
of a dense HS fluid. This formula is the outcome of t
infinitely slow exchange~elastic collisions! between transla-
tional and rotational energies. Finally, Sec. IX presents
merical results for the shear viscosity of uniaxial ellipsoid
fluids using computationally convenient expressions given
the Appendix.

II. COLLISIONAL FREQUENCY

Consider a low-density pure fluid composed of hard bia
ial ellipsoidal molecules each of massm and principal mo-
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ment of inertia tensorIJ with componentsI n (n51,2,3). The
inelastic collisions of a pair of such molecules are descri
by their support functionsh andh1 , the unweighted averag

^zex&or of surface area elementzex per unit solid angledk̂ on
the volume excluded to the center of mass of the first m
ecule when the molecules are in contact at a fixed orie
tion, the unit outward surface normalk̂ on the surface of the
second molecule at the contact point, the translation
rotation-energy transfer functionD, and the one-particle lo
cal distribution functionsf (cW ,vW ,rW,t) and f (cW1 ,vW 1 ,rW,t) of the
first and second molecules at the vector positionrW and timet.
The functionf is defined in such a way thatf (cW ,vW ,rW,t)dcW dvW
is the number density of the first type of molecule havi
postcollisional linear and angular velocities (cW ,vW ) in the ve-
locity space elementdcW dvW and f 1[ f (cW1 ,vW 1 ,rW,t) is simi-
larly defined in the elementdcW1 dvW 1 . The definitions ofh,
h1 , D, and ^zex&or are given elsewhere@see Eqs.~1!, ~14!,
~42!, and~A28! of Ref. @18~a!##.

For a fluid at ordinary pressure, the frequency of inelas
collision per unit volume is given@1~b!# under the assump
tion of molecular chaos, by

f ~rW ! f 1~rW !k̂•gW 12̂ zex&ordk̂ dcW dvW dcW1 dvW 1 . ~1!

The relation between the postcollisional relative velocitygW 12
of the point of contact of the two colliding molecules and t
corresponding relative velocityvW 12 of the center of massO1
of the second molecule with respect toO, that of the first
one, is given by

gW 125vW 121vW 13rW 12vW 3rW . ~2!

Here vW 125cW12cW , andrW 1 and rW are the vector positions o
the second and first molecules at the point of contact m
sured, respectively, fromO1 andO, and are given by@24#

rW m5@ k̂m1¹W km
#hm~ym ,zm!, ~3!

wherem51,2; h2[h, rW 2[rW , and¹W km
is the gradient opera

tor with respect tok̂m . Also k̂1[ k̂52 k̂2 . The variablesym
andzm are defined in Ref.@23#.

Although we shall retain the molecular chaos assump
in the dense fluid, the frequency expression of Eq.~1! needs
two modifications. First, becauseO ~Fig. 1! is atrW,O1 will be

FIG. 1. Geometry of hard ellipsoid collision;O is the center of

mass of the first molecule andO1 that of the second one.O1PW

5rW 1 andOPW 5rW .
d

l-
a-

-

c

a-

n

at rW2dW 12(2 k̂) and hencef 1(rW) should be replaced byf 1(rW
2dW 12), wheredW 12(2 k̂)5rW 1( k̂)2rW (2 k̂). Secondly, the vol-
ume of the molecules in a dense fluid is not negligible
compared with the volume occupied by the fluid. As a co
sequence, the effective volume in which the center of a
molecule can lie is reduced and thereby the frequency
collision is increased by a factorY, the pair distribution func-
tion, which must be a function only ofrWc(2 k̂)5rW1rW (2 k̂)
where the biaxial molecules impinge, and not of the veloc
of the pointP ~by the assumption of molecular chaos!. Con-
sequently, when a dense fluid is considered, the collis
frequency per unit volume

Y„rWc~2 k̂!…f ~rW ! f 1„rW2dW 12~2 k̂!…

3 k̂•gW 12̂ zex&ordk̂ dcW dvW dcW1 dvW 1 ~4!

should be used instead of Eq.~1!. It should be noted that in
Eqs. ~1! and ~4! we have suppressed the translational a
angular velocities and time dependence off and f 1 for the
sake of brevity.

III. MODIFIED TAXMAN EQUATION

A. Calculation of „­f Õ­t…coll

The Taxman@11# integro-differential equation for low-
density fluid has the form

] f

]t
1cW•

] f

]rW
1FW •

] f

]cW
5S ] f

]t D
coll

dilute

, ~5!

whereFW represents an external acceleration acting only
the center of massO of the molecule. We retain this form o
the equation for a dense fluid. However, the expression
(] f /]t)coll , representing the rate of change due to collisi
in a dense fluid, is not the same as (] f /]t)coll

dilute. We derive
below the expression for (] f /]t)coll and call the resulting
equation the modified Taxman equation.

Consider the frequency per unit volume of an inverse c
lision whencek̂ becomes2 k̂; hence it follows from Eq.~3!

that rW m(2 k̂)52rW m( k̂) and dW 12(2 k̂)52dW 12( k̂). In such a
collision, O1 is at rW1dW 12( k̂), while the molecules collide a
rW1rW ( k̂). Hence from Eq.~4! the frequency of collision will
be

Y„rWc~ k̂!…f ~cW8,vW 8,rW,t ! f „cW18 ,vW 18 ,rW2dW 12~ k̂!,t…k̂•gW 12̂ zex&or

3dk̂ dcW dvW dcW1 dvW 1

[Y„rWc~ k̂!…f 8~rW ! f 18„rW2d( 12~ k̂!…

3 k̂•gW 12̂ zex&ordk̂ dcW dvW dcW1 dvW 1 . ~6!

Consider an integral operatorÔ1 which represents a four
dimensional integral over the orientational coordinates o
pair of molecules and is defined by
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Ô1w~f1 ,f2 ;z1 ,z2!5
1

4p2 E
0

2pE
0

2pE
0

1E
0

1

df1df2dz1dz2

3^zex&orw~f1 ,f2 ;z1 ,z2!, ~7!

wherew is any function of the orientational coordinates. It
now possible to write the form of the expression f
(] f /]t)coll with the help of Eqs.~4!, ~6!, and~7!. We thus get

S ] f

]t D
coll

52x~T!Ô1E E E k̂•gW dk̂ dcW1 dvW 1

3@Y„rWc~ k̂!…f 8~rW ! f 18„rW2dW 12~ k̂!…

2Y„rWc~2 k̂!…f ~rW ! f 1„rW1dW 12~ k̂!…# ~8!

and

gW 5
1

2x~T!
gW 12, x~T!5S kBT

m D 1/2

. ~9!

B. Equation for f „1…

If the fluid is uniform,Y, f 1 , and f do not depend onrW
andrW or rW 1 , and Eq.~8! in this case takes the form

S ] f

]t D
coll

52Yx~T!Ô1E E E ~ f 8 f 182 f f 1!k̂•gW dk̂ dcW1 dvW 1 .

~10!

This expression differs from the corresponding express
@11# for the low-density fluid only by the factorY and one
can easily show@1~c!# that, in the uniform steady state,f has
the generalized Maxwellian form

f ~0!5nS Am

2pkBTD 3

~ I 1I 2I 3!1/2expS 2
1

2kBT
~mC21 IJ:vW vW ! D

~11!

such that the number densityn, temperatureT, mass velocity
cW0 , and peculiar velocityCW (5cW2cW0) are independent ofrW
and t.

When the fluid is not in a uniform steady state, a fir
order approximationf (0) to f is given by Eq.~11! wheren, T,
andcW0 are now functions ofrW and t, and its second approxi
mation f (0)1 f (1) is

f ~0!1 f ~1!5 f ~0!~11f~1!!, ~12!

wheref (1) is a linear function of the first derivatives ofn, T,
andcW0 . By substituting Eq.~12! into the left hand side of Eq
~5!, neglecting all terms involving products of derivatives
derivatives of second order, and using the definition ofCW ,
one finds that

S ] f

]t D
coll

5
] f ~0!

]t
1cW•

] f ~0!

]rW
1FW •

] f ~0!

]cW

[ f ~0!S D

Dt
1cW•

]

]rW
1FW •

]

]CW
D ln f ~0!, ~13!
n

-

where the ‘‘mobile’’ or ‘‘substantial’’ time-derivative opera
tor @1~d!# D/Dt is defined as

D

Dt
5

]

]t
1cW0•

]

]rW
. ~14!

If one substitutes the expression forf (0) from Eq. ~11!
corresponding to a nonuniform and unsteady state of
fluid into Eq. ~13!, one obtains

S ] f

]t D
coll

5 f ~0!S 1

n

Dn

Dt
1~j21V223!

1

T

DT

Dt
12jWjW :¹W cW0D

1 f ~0!CW •F¹W ln~nkBT!1~j21V224!¹W ln T

1
m

kBT S DcW0

Dt
2FW D G , ~15!

where the dimensionless peculiar velocityjW and the magni-
tude of the angular velocityVW of the first molecule are de
fined by

jW5
1

&x~T!
CW , V25

1

2kBT
IJ:vW vW . ~16!

IV. SOLUTION OF THE MODIFIED EQUATION

A. Second approximation to„­f Õ­t…coll

An approximate form of Eq.~8! can easily be derived by
Taylor-expandingY, f, and f 18 in powers ofrW m , using Eqs.
~3! and ~9! together with the symmetry property of the o
eratorÔ1 , and retaining only the first derivatives. It is the
given by

S ] f

]t D
coll

5J1~rW !1J2~rW !1J3~rW !, ~17!

where

J1~rW !52x~T!Y~rW !Ô1E E E ~ f 8 f 182 f f 1!k̂•gW dk̂ dcW1dvW 1 ,

~18!

J2~rW !52x~T!Y~rW !Ô2E E E ~ f 8k̂•¹W f 181 f k̂•¹W f 1!

3 k̂•vW dk̂ dcW1dvW 1 , ~19!

and

J3~rW !5x~T!¹W Y~rW !•S Ô2E E E k̂~ f 8 f 181 f f 1!

3 k̂•vW dk̂ dcW1dvW 1D , ~20!

with

Ô2w5Ô1w~h1h1!. ~21!
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The approximate form ofJ1(rW) can be obtained by sub
stituting Eq. ~12! into Eq. ~18!, dropping the products
f (1)f1

(1) andf8(1)f18
(1) as before, and using

f ~0! f 1
~0!5 f 8~0! f 18

~0! . ~22!

Then one can see that

J1~rW !.2x~T!Y~rW !Ô1E E E k̂•gW dk̂ dcW1dvW 1

3 f ~0! f 1
~0!~f8~1!1f18

~1!2f~1!2f1
~1!!. ~23!

The expressions forJ2(rW) andJ3(rW) involve space deriva-
tives; thus, in substituting Eq.~11! into Eqs.~19! and ~20!,
one may drop the terms involvingf (1) and f18

(1) , and re-
placef’s by f (0)’s. Then one finds with the help of Eq.~22!
that

J2~rW !1J3~rW !.2x~T!Y~rW !Ô2E E E k̂•vW dk̂ dcW1dvW 1

3 f ~0! f 1
~0!k̂•¹W ln~ f 18

~0! f 1
~0!Y!. ~24!

After substituting the values off 1
(0) and f 18

(0) into

¹W ln(f18
(0)f1

(0)Y) of the above equation, we find that

J2~rW !1J3~rW !52x~T!Y~rW !Ô2

3E E E f ~0! f 1
~0!k̂•vW dk̂ dcW1dvW 1

3 k̂•F¹W lnS n2Y

T6 D1~j1
21j18

21V1
21V18

2!

3¹W ln T1
&

x
¹W cW0~rW,t !•~jW11jW18!G , ~25!

where (jW8,VW 8) and (jW18 ,VW 18) denote the precollisional di
mensionless translational and angular velocities of the
molecules, such that@18,25#

jW85jW1
& k̂k̂•gW

D2 , jW185jW12
& k̂k̂•gW

D2 , ~26!

vW 5
1

2x~T!
vW 12, ~27!

VW m5BJ•vW m , BJ5
1

A2kBT
~AI 1ââ1AI 2b̂b̂1AI 3ĉĉ!,

VW m8 2vW m522qm

k̂•gW

D2 , ~28!

and the expression forqm appears in Ref.@18~a!#.
The jW18 , j18

2, and V18
2 of Eq. ~25! can be expressed i

terms ofjW1 , j1
2, V1

2, k̂•vW , qW 1 , andD2 with the help of the

approximate forms of Eqs.~26! and ~28! when k̂•gW there is
o

approximated byk̂•vW . Integration performed with respect t
k̂ using the standard methods described in Ref.@1~a!# then
give

J2~rW !1J3~rW !5
4p

3
x~T!Y~rW !Ô2

3E E f ~0! f 1
~0!dcW1dvW 1vW •¹W

3 lnS n2Y

T6 D12j1
2vW 2

2&

5D2 ~2vW vW •jW11v2jW1!

1S 6v2

5D4 12V1
2D vW 23S aW 1•VW 1

D2 D vvW

1
12a1

2

5D4 v2vW •¹W ln T1
&

x~T!

3H S 2jW12
2&

5D2 vW D vW :¹W cW02
&v2

5D4 ¹W •cW0J .

~29!

It follows from Eqs.~11!, ~16!, and~26!–~28! that

vW 5
1

&
~jW12jW !, f 1

~0!dcW1dvW 15
n

p3 exp~2j1
22V1

2!djW1dVW 1 .

~30!

By substituting Eq.~30! into Eq. ~29!, integrating with re-
spect tojW1 andVW 1 , and expressinga1

2 in terms ofD2 since
D2511a1

21a2
2, we get

J2~rW !1J3~rW !52
4pn

3
x~T!Y~rW !Ô2f ~0!

3F 1

&
jW •¹W ln~n2YT!1

z1

&
jW •¹W ln T

1
1

x H z2¹W •cW01
2

5D2 jW jW :¹W cW0J G , ~31!

where

z15
3j2

5D22
1

2D221, z25
j2

5D2 1
1

2D221. ~32!

Now using Eqs.~23! and~31! in Eq. ~17! we obtain the form
for (] f /]t)coll .

B. Evaluation of f „1…

The integro-differential equation satisfied by the functi
f (1) can be obtained by substituting the value of (] f /]t)coll
in Eq. ~15! and using Eq.~9!. We thus get
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Y~rW !Ô1E E E f ~0! f 1
~0!~f~1!1f1

~1!2f8~1!2f18
~1!!

3 k̂•gW 12dk̂ dcW1dvW 1

52 f ~0!F1

n

Dn

Dt
1~j21V223!

1

T

DT

Dt G
2 f ~0!F&x~T!jW•H x22S DcW0

Dt
2FW D1

1

nkBT
¹W p0J G

2 f ~0!F&x~T!jW•H ~j21V224!1
n

3
Y~rW !Ôz1J G

3¹W ln T22 f ~0!Fn

3
Y~rW !Ôz2¹W •cW0

1H 11
2n

15
Y~rW !ÔS 1

D2D J jWjW :¹W cW0G , ~33!

where

Ô52pÔ2 , p05nkBTS 11
n

3
Y~rW !a D ~34!

anda5Ôw with w51.
If we multiply Eq. ~33! by c dcW dvW , where any summa

tional invariantc is not a function ofrW, and then integrate
with respect tocW and vW , the left-hand side of the resultin
equation vanishes by virtue of the transformation descri
in Ref. @1~e!#. Thus we have the result

Dn

Dt
1

1

3 F3n12n2Y~rW !ÔS 1

D221D G¹W •cW050 ~35!

whenc51,

DcW0

Dt
2FW 1

1

r
¹W p01

nkBT

3m
Y~rW !ÔS 1

D221D50 ~36!

when @1~f!# c5mCW , and

D

Dt
ln~nT!1

1

3 Fn

3
Y~rW !ÔS 7

D226D14G¹W •cW050 ~37!

when @18~a!# c51/2„mC21( IJ)21:LW LW …. Using Eqs. ~34!
and ~35! in Eq. ~37!, we get

DT

Dt
1

p0

3nkB
¹W •cW01

nT

9
Y~rW !ÔS 1

D221D¹W •cW050, ~38!

wherer5mn and the angular momentumLW 5 IJ•vW .
Equations~35!, ~36!, and~38! are the first approximation

to the equations of continuity, linear momentum, and ener
These equations reduce to the corresponding equa
@1~c!,10# for a low-density fluid if the last terms of thes
equations are dropped together with that ofp0 in Eq. ~34!.
On substituting the values of the mobile time derivatives
n, cW0 , andt from Eqs.~35!–~38! into Eq. ~33!, one obtains
d

y.
ns

f

J~f~1!![Ô1E E E f ~0! f 1
~0!~f~1!1f1

~1!2f8~1!2f18
~1!!

3 k̂•gW 12dk̂ dcW1dvW 1

52 f ~0!Y21~rW !F H 11
n

5
Y~rW !ÔS 1

D2D J
3~j21V224!GCW •¹W ln T22 f ~0!Y21~rW !

3F11
2n

15
Y~rW !ÔS 1

D2D GjW j̊W :¹W •cW02
1

3
f ~0!Y21~rW !

3F H 11
n

3
Y~rW !ÔS 1

D2D J
3~j22V2!¹W •cW0G , ~39!

where the nondivergent tensorjW j̊W is defined by

jW j̊W5jWjW2 1
3 UJ , ~40!

with UJ a unit tensor of rank 2.
The counterpart of Eq.~39! for the low-density fluid, as

given in Ref.@1~c!#, can be written as

J~f~1!!52 f ~0!F ~j21V224!CW •¹W ln T

12jW j̊W :¹W •cW01
1

3
~j22V2!¹W •cW0G , ~41!

whose solution has the form

f~1!52~AW 11AW 2!¹W ln T22~BJ :¹W cW01B¹W •cW0!. ~42!

Here AW 1 and AW 2 correspond to the solutions of (j225/2)CW

and (V223/2)CW of Eq. ~41! and their approximate forms a
well as those ofBJ andB are given in Ref.@1~c!#.

The solution of Eq.~39! can at once be given in terms o
AW 1 , AW 2 , BJ , andB by just looking at the solution given in Eq
~42! and by comparing the terms containing¹W ln T, ¹W cW0 , and
¹W •cW0 in Eqs. ~39! and ~41!. This yields the solution of Eq
~39! as

f~1!52Y21F H 11
nY

5
ÔS 1

D2D J AW 11AW 2G•¹W ln T22Y21

3F H 11
2nY

15
OW S 1

D2D J BJ :¹W cW0

1H 11
nY

3
ÔS 1

D2D J B¹W •cW0G . ~43!

V. PRESSURE TENSOR AND THERMAL-FLUX VECTOR

The pressure tensorPJ (0) and thermal-flux vectorqW (0) of a
pure low-density hard biaxial fluid are due only to the fr
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motions of the molecules between collisions and their val
correct up to the second approximation are given by@1~c!#

PJ ~0!5r~CW CW !~0!5nkBTUJ22@h#1eW̊2@k#1UJ¹W •cW0 ~44!

and

qW ~0!5
1

2
@r~C2CW !~0!1n~ IJ !21:LW LW̄ 52@l#1¹W T#. ~45!

Here

~¯ ![
1

n E E f ~0!~11f~1!!~¯ !dcW dvW ~46!

˚
and eJ̊ ([¹W cW0

%
is the rate-of-shear tensor. Also,@h#1 , @k#1 ,

and @l#1 are the first approximate values of the shear a
bulk viscosities and the thermal conductivity of the flui
The expressions for these quantities have been derive
Ref. @18~a!#, and specifically

@l#15
kB

2T

2m
~5a113a2!

5
3kB

2T

8mD
@25a22210~N23!a121~N23!2a11#, ~47!

where the dynamically active degrees of freedomN in our
problem are 6, anda1 and a2 are suitable constants of th
equation

n~AW 11AW 2!5a1S j22
5

2DCW 1a2S V22
3

2DCW . ~48!

The right side of the above equation contains the fi
approximations toAW 1 and AW 2 , and the values ofa1 and a2
turn out to be

a15
3

4D
~5a2223a12!, a25

3

4D
~3a1125a12!, ~49!

with

D5a11a222a12
2 . ~50!

Recently, the collision integralsa11, a12, and a22 and
thereby the quantity@l#1 have been evaluated by us@18~a!#.

Now the kinetic contributionsPJK andqW K to the pressure
tensorPJ and heat-flux vectorqW of the dense fluid can be
readily obtained from Eqs.~42!–~50!. We thus get

PJK5r~CW CW !5FnkBT2Y-1H 11
nY

3
ÔS 1

D2D J @k#1¹W •cW0G
3UJ22Y21H 11

2nY

15
ÔS 1

D2D J @h#1eW
+

,

~51!
s

d

in

t

qW K5
1

2
r~C2CW !

52
kB

2T

2m F5Y21H 11
nY

5
ÔS 1

D2D J a113Y21a2G¹W T

52FY21@l#11
3nkB

2T

8mD
ÔS 1

D2D ~5a2223a12!G¹W T.

~52!

The quantitiesPJK andqW K are the parts ofPJ andqW that arise
from the transport of linear momentum and energy by
motion of the molecules from one point to another. To the
should be added the contributions arising from the transp
of the momentum and energy by molecular collisions. Th
evaluations will be done up to the second approximation
subsequent sections.

VI. COLLISIONAL TRANSFER FLUX VECTOR

Let us consider the mechanism of transfer of a summ
tional invariantc across an element of areadSat the pointrWc

~Fig. 1!. A collision between the molecules on the oppos
sides ofdS transfers instantaneously only a part ofc from
one molecule to the other, such that a flow ofc occurs,
although neither of the molecules crosses throughdS. As
before, it is presumed thatc is not a function ofrWc .

In a collision between the molecules, the first molecu
with velocities (cW ,vW ) lies on the positive side ofdS, the
second one with velocities (cW1 ,vW 1) on the negative side, an
the unit vectorn̂ is the outward normal drawn ondSfrom the

negative to the positive side. Sincek̂ is the unit vector at the
point of contactP in the direction of motion of the secon

molecule,k̂•n̂ is positive. If O ~Fig. 1! lies in a cylinder of

area elementdSand lengthk̂•OO1
W with generators paralle

to k̂, the volume of the cylinder is (k̂•n̂)( k̂•OO1
W )dS. If O1

of another molecule lies within this cylinder, a collision wi

occur. The positions ofO and O1 are rWc2rW (2 k̂) and rWc

2rW 1( k̂) while rWc gives the position of impact of the two
molecules. Then by analogy with Eq.~4!, the probable num-
ber of such collisions per unit time in which (cW ,vW ), (cW1 ,vW 1),

and k̂ lie, respectively, in the ranges (dcW ,dvW ), (dcW1 ,dvW 1),

anddk̂ is given by

Y~rWc! f „rWc2rW ~2 k̂!…f 1„rWc2rW 1~ k̂!…~ k̂•n̂!

3 k̂•OO1
W dŜ zex&or3 k̂•gW 12dk̂ dcW dvW dcW1dvW 1 .

In each such collision, a molecule on the positive s
gains a quantityc82c of c from the molecule on the nega
tive side, wherec8 is the precollisional value ofc. Hence
the total rate of transfer ofc acrossdSby collision per unit
area per unit time is
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n̂•cW CT[Y~rWc!Ô1E E E E E ~c82c! f „rWc2rW ~2 k̂!…

3 f 1„rWc2rW 1~ k̂!…3 k̂•n̂~ k̂•OO1
W !k̂•gW 12

3dk̂ dcW dvW dcW1dvW 1 . ~53!

Here, integrations are over all values of the variables s
that k̂•gW andk̂•n̂ are positive; andcW CT may be defined as th
collisional vector of flow ofc.

The restriction onk̂•n̂ is inconvenient and may be by
passed as follows. Let us change the variables (cW ,vW ) in Eq.
~53! to (cW1 ,vW 1). This is equivalent to exchanging the role
of the colliding molecules. Thusk̂, gW , and c82c are
changed, respectively, to2 k̂, 2gW , and c182c152(c8

2c). With this interchange,n̂•cW CT remains invariant but the
integrations are now to be carried out over all the variab
such thatk̂•gW 12 is again positive butk̂•n̂ is negative. It is
then straightforward to show that

n̂•cW CT5
1

2
Y~rWc!Ô1E E E E E ~c82c! f 1„rWc2rW ~ k̂!…

3 f „rWc2rW ~2 k̂!…

3 k̂•n̂~ k̂•OO1
W !k̂•gW 12dk̂ dcW dvW dcW1dvW 1 , ~54!

where the integrations are over all values of the variab
such thatk̂•gW is positive.

As in Sec. IV, if we do the Taylor expansions off and f 1 ,
use the definitions ofgW 12 andrW m from Eqs.~2! and ~3!, and
retain only the first derivatives, we find that

cW CT5
1

2
Y~rWc!Ô2E E E E E ~c82c! f f 1k̂~ k̂•vW 12!

3dk̂ dcW dvW dcW1dvW 1

1
1

2
Y~rWc!Ô3E E E E E ~c82c! f ~0! f 1

~0!¹W ln

3S f ~0!

f 1
~0!D k̂~ k̂•vW 12!dk̂ dcW dvW dcW1dvW 1 , ~55!

where

Ô35Ô2~h!5Ô1~h1h1!h. ~56!

VII. TRANSPORT COEFFICIENTS OF THE DENSE
FLUID

A. Viscosities

The collisional transfer contributionPJCT to the pressure
tensorPJ may be derived from Eq.~55! by settingc5mCW
5m(cW2cW0), wherecW0 is evaluated at the pointrWc and does
not vary with the position of the molecule. Then Eq.~55!
becomes
h

s

s

PJCT5
m

2
Y~rWc!Ô2E E E E E ~CW 82CW ! f f 1k̂~ k̂•vW 12!

3dk̂ dcW dvW dcW1dvW 1

1
m

2
Y~rWc!Ô3E E E E E ~CW 82CW ! f ~0! f 1

~0!¹W

3 lnS f ~0!

f 1
~0!D k̂~ k̂•vW 12!dk̂ dcW dvW dcW1dvW 1 , ~57!

The approximate form ofCW 82CW from Eqs.~9!, ~16!, and
~26! is

CW 82CW 5 k̂~ k̂•vW 12!/D
2, ~58!

wherek̂•gW 12 is approximated, as before tok̂•vW 12. By substi-
tuting Eq. ~58! into Eq. ~57! and then executing thek̂ inte-
grations by the standard technique@1~a!#, one obtains

PJCT5
pm

15
Y~rWc!Ô2S 1

D2D E E E E f f1~2vW 12vW 121v12
2 UJ !

3dcW dvW dcW1dvW 11
pm

24
Y~rWc!Ô3

3S 1

D2D E E E E f ~0! f 1
~0!dcW dvW dcW1dvW 1v12

3F H vW 12•¹W lnS f ~0!

f 1
~0!D J ~ v̂12v̂121UJ !

1H ¹W lnS f ~0!

f 1
~0!D J vW 121vW 12¹W lnS f ~0!

f 1
~0!D G . ~59!

Since the average valuef̄ of any functionf is defined by

nf̄5E E f f dcW dvW 5E E f 1f1dcW1dvW 1 ,

vW 125CW 12CW , andCW̄ 15CW̄ 50, the value of the first term on
the right-hand side of Eq.~59! becomes

2pmn2

15
Y~rWc!Ô2S 1

D2D ~2CW CW̄ 1C2UJ !. ~60!

Further, one can see from Eq.~11! that

¹W lnS f ~0!

f 1
~0!D 5

1

2kBT2 @m~C22C1
2!

1 IJ:~vW vW 2vW 1vW 1!#¹W T1
m

kBT
¹W cW0•~CW 2CW 1!.

~61!

If Eq. ~61! is substituted into the second integral of E
~59!, the terms involving¹W T identically vanish because eac
of these is an odd function ofCW or CW 1 , and the second
integral term of Eq.~59! becomes
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2
pm2

24kBT
Y~rWc!Ô3S 1

D2D E E E E f ~0! f 1
~0!dcW dvW dcW1dvW 1

3v12@~¹W cW0 :vW 12vW 12!~ v̂12v̂121UJ !1$~¹W cW0•vW 12!vW 12

1vW 12~¹W cW0•vW 12!%#. ~62!

The integrals of the above equation can readily be perform
by changing the variablescW and cW1 to GW 0 and vW 12, where
GW 05(CW 1CW 1)/2, and then Eq.~62! becomes

2ÃDF6

5
eJ
+

1UJUJ :¹W cW0G , ~63!

where

ÃD5
8n2

9
~pmkBT!1/2Y~rWc!Ô3S 1

D2D . ~64!

The expression forPJCT of Eq. ~59! can be obtained by
adding the contributions from Eqs.~60! and~63!, and, if one
adds to this sum the expression forPJK from Eq. ~51!, one
gets the final expression forPJ , which arises from the colli-
sional transport of linear momentum as well as the trans
of molecular motions. It is

PJ5PJK1PJCT

5rF11
4pn

15
Y~rWc!Ô2S 1

D2D GCW CW̄

1
2prn

15
Y~rWc!Ô2S 1

D2DC2UJ2ÃD@ 6
5 eJ

+

1UJUJ :¹W cW0#.

~65!

On substituting in the above equation the values ofrCW CW̄

from Eq.~51!, that ofÔ from Eq.~34!, and using the kinetic
theory definition@1~g!# of temperature, it takes the form

PJ5XP02H ÃD1Y21F11
2n

15
YÔS 1

D2D G
3F11

n

3
YÔS 1

D2D G@k#1J ¹W •cW0C
3UJ2H 6

5
ÃD12Y21F11

2n

15
Y~rWc!ÔS 1

D2D G2

@h#1J eJ
+

.

~66!

If the fluid is in a uniform and steady state,¹W •cW0 and eJ
+

are zero andPJ reduces to the hydrostatic pressureP0 . For a
fluid not in a uniform steady state, the hydrostatic press
becomes

P02Ã8¹W •cW0 , ~67!

where
d

rt

re

P05nk8TF11
n

3
Y~YW c!ÔS 1

D2D G
and

Ã85ÃD1Y21F11
2n

15
Y~rWc!ÔS 1

D2D G
3F11

n

3
Y~rWc!ÔS 1

D2D G@k#1 . ~68!

It follows from Eq. ~35! that the extra term, i.e.
2Ã8¹W •cW0 , of Eq. ~67! differs from zero whenever the den
sity of the fluid is varying; it represents a volume viscos
similar to that@1~c!# of a dilute fluid, and opposes expansio
or contraction of the dense fluid. The deviation ofPJ from its
hydrostatic part is shown in the last two terms of Eq.~66!

and can be equated to22h8eJ
+

, whereh8 is the shear viscos
ity of the fluid. Thus

h85Y21F11
2n

15
Y~rWc!ÔS 1

D2D G2

@h#11
3

5
ÃD . ~69!

B. Thermal conductivity

The collisional transfer partqW CT of the heat-flow vectorqW
may be obtained by takingc5(mC21 IJ:vW vW )/2, whereCW is
still the velocity of a molecule relative to the mass veloc
cW0 of the fluid at the specific pointrWc . Then we have from
Eq. ~55!

qW CT5qW CT11qW CT2 ~70!

with

qW CT15
m

4
Y~rWc!E E E E E dk̂ dcW dvW dcW1 dvW 1 Ô2

3$QW f f 1~C822C2!%

1Ô3H QW f ~0! f 1
~0!¹W lnS f ~0!

f 1
~0!D ~C822C2!J ~71!

and

qW CT25
1

4
Y~rWc!E E E E E dk̂ dcW dvW dcW1 dvW 1Ô2

3$QW f f 1 IJ:~vW 8vW 82vW vW !%

1Ô3H QW f ~0! f 1
~0!¹W lnS f ~0!

f 1
~0!D IJ:~vW 8vW 82vW vW !J , ~72!

whereQW 5 k̂( k̂•vW 12).
The integrations inqW CT1 can be performed in the sam

way as those in Sec. VII A, and the integrals inqW CT2 can be
similarly executed by utilizing Eq.~28!. On carrying out the
integrations,qW CT2 turns out to be zero and so

qW CT5qW CT15
mn2

10
Y~gW c! ÔS 1

D2DC2CW 2ÃD~cv! tr¹W T,

~73!

where the specific heat (cv) tr per unit mass due to the trans
lational motion is 3kB/2m. To this qW CT we must addqW K of
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Eq. ~52!, which gives the rate of transport of molecular m
tions, and the total thermal-flux vectorqW is given by

qW 5
r

2 F11
n

5
Y~rWc!ÔS 1

D2D GC2CW 2ÃD~cv! tr¹W T

2XkB
2T

2m
Y21F11

n

5
Y~rWc!ÔS 1

D2D G
3H 5F11

n

5
Y~rWc!ÔS 1

D2D Ga113a2J C
3¹W T2ÃD~cv! tr¹W T

[2@l8#1¹W T. ~74!

Thus at any temperature the first approximation@l8#1 to the
thermal conductivityl8 of the dense fluid is given in term
of that at ordinary densities@l#1 by the equation

@l8#15
kB

2T

2m
Y21F11

n

5
Y~cW c!ÔS 1

D2D G
3H 5F11

n

5
Y~rWc!ÔS 1

D2D Ga113a2J 1ÃD~cv! tr

5F11
n

5
Y~rWc!ÔS 1

D2D G H Y21@l#11
3nkB

2T

8mD
ÔS 1

D2D
3~5a2223a12!J 1ÃD~cv! tr . ~75!

In Ref. @18~a!#, the expressions for@h#1 and @l#1 are
given in terms of various collisional integrals over the fo
orientational coordinates of a pair of interacting hard biax
molecules, and the numerical procedure for their evalua
is also given. Two extra collisional integralsÔ3(1/D2) and
Ô(1/D2) that appear in Eqs.~64!, ~69!, and ~75! are of the
same type@see Eqs.~7!, ~34!, and~56!# and can be similarly
executed. An approximate formula for the contact pair d
tribution functionY(rWc) has been proposed by Song and M
son@26#. Therefore,Ã8, h8 and@l8#1 of Eqs.~68!, ~69! and
~75! can be estimated numerically.

VIII. TRENDS AND LIMITING BEHAVIOR

The results in Eqs.~34! and ~67! give, respectively, the
values for the hydrostatic pressurep0 of a dense hard biaxia
fluid that is in a uniform steady state and the pressureP0

2v8¹W •cW0 if the fluid is not in uniform steady state. Firs
approximationsh8, Ã8, and@l8#1 to the shear viscosity, bulk
viscosity, and heat conductivity of the fluid are given, r
spectively, by Eqs.~69!, ~68!, and~75!.

For a pure fluid of hard spheres of diameters, we have
D51, ^sex&a5s2, Ô(1)52ps3, Ô3(1)5s4/4, and the
contact pair distribution functionY(rWc)5Y(s). Hence for a
pure and dense HS fluidP0 reduces to the correct resu
nkBT@11(2p/3)ns3Y(s)#, and P02Ã8¹W •cW0 of Eq. ~67!
to the Enskog result@1~a!,27#
l
n

-
-

-

nkBTS 11
2p

3
ns3Y~s! D2

4

9
~pmkBT!1/2n2s4Y~s!¹W •cW0 .

~76!

Also, h8 of Eq. ~69! reduces to the corresponding Enskog H
result

S mkBT

p D 1/2F 5

16s2 Y21~s!S 11
4pns3

15
Y~s! D 2

1
4p

15
n2s4Y~s!G ~77!

because the value of@h#1 given elsewhere@see Eqs.~53!,
~54!, ~59!, and ~62! of Ref. @18~a!## becomes
(5/16s2)AmkBT/p. However, in the appropriate limit of a
dense model fluid of uniaxial ellipsoids, thish8 formula does
not reduce completely to the corresponding formula@28# de-
rived through the TCF method as given in Eq.~33! of Ref.
@16~f!#. The first term of Eq.~69! does and the second on
does not reduce, respectively, to the second and first term
Ref. @16~f!#. We think that this difference between the she
viscosity formulas for the fluid derived through the TCF a
our Enskog-type theory is the result of treating the collisio
transfer effect differently in the two theories. This sort
discrepancy has also been seen in the viscosity results
dense HS fluid derived through the Enskog@1~a!# and TCF
@5~a!# techniques.

Discussion of the limiting behavior of@l8#1 of Eq. ~75! is
interesting and requires some care. Chapman and Cow
@1# ignored the rotational kinetic energy of the molecu
throughout their study of the kinetic theory of HS fluids an
therefore, in their workN53, which takes into account only
the translational motion of the molecules. For this case
first equation of~75! becomes

5kB
2T

2m
Y21~s!S 11

2pns3

5
Y~s! D 2

a11ÃD
~HS!~cv! tr ,

~78!

because it follows from Eq.~48! that a2 does not figure in
Eq. ~75! for N53 and from Eq.~76! ÃD

~HS! is equal to
(4/9)ApmkBTn2s4Y(s). It can also be seen from Eqs.~53!,
~54!, and ~64!–~66! of Ref. @18~a!# that for a HS a11

58s2ApkBT/m, a1250, and a2256s2ApkBT/m. Thus
from Eqs. ~49! and ~50! a15(15/32s2)Am/pkBT and Eq.
~78! reduces to the Enskog HS result

75kB

64s2 S kBT

pmD 1/2

Y21~s!S 11
2pns3

5
Y~s! D 2

1ÃD
~HS!~cv! tr .

~79!

However, for N56, @l#1 of Eq. ~47! is equal to
(3kB

2T/8m)(25/a1119/a22) and finally reduces to
(111kB/64s2)AkBT/pm when the HS values ofa11, a12,
anda22 are utilized. With this HS value of@l#1 , the second
equation of~75! for N56 becomes
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TABLE I. Values of the shear viscosity for uniaxial~prolate! ellipsoidal fluids. KT, kinetic theory
~calculations from our theory!; MD, molecular dynamics~simulations by Allenet al. @16~f!#!; TCF, time
correlation function~theory of Allenet al. and calculations in Ref.@16~f!#!. ‘‘Ours’’ implies calculations in
this work using expressions as mentioned in the text.

c/a n/nCP

h8 ~KT!
Ours

h08 ~MD!
Ref. @18~f!#

h08 ~TCF!
Ref. @18~f!#

h08
Ours

h`
sym ~TCB!

Ref. @18~f!#
h`

sym

Ours
C1

Ours

2 0.3 0.3162 0.372~5! 0.3621 0.3534 0.1745 0.1657 0.1286
2 0.5 0.9204 1.15~6! 1.1431 1.1004 0.8456 0.8031 0.6231
2 0.7 3.1290 6.2~4! 4.0125 3.8433 3.3554 3.1865 2.4722
3 0.3 0.2833 0.40~1! 0.3885 0.3697 0.2341 0.2154 0.1290
3 0.5 0.8648 1.24~6! 1.3719 1.2815 1.1290 1.0387 0.6220
3 0.6 1.5672 2.7~3! 2.5664 2.3883 2.2247 2.0468 1.2257
5 0.2 0.1637 0.26~1! 0.2646 0.2393 0.1595 0.1341 0.0586
5 0.3 0.2963 0.47~3! 0.5915 0.5174 0.4665 0.3925 0.1714
5 0.4 0.5575 1.02~9! 1.2406 1.0691 1.0797 0.9083 0.3967

10 0.2 0.1957 0.8~1! 0.7019 0.4571 0.6294 0.3847 0.1232
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S kB
3T

pmD 1/2S 11
2pns3

5
Y~s! D S 111

64s2 Y21~s!1
15pns

32 D
1ÃD

~HS!~cv! tr . ~80!

For a low-density HS fluid, one can drop those terms fr
Eqs. ~79! and ~80! that depend onn and takeY(s) to be
unity, and then the equations reduce to the Eucken and m
fied Eucken formulas@1~c!,18~a!# correct up to the first ap
proximation. This reduction suggests that Eqs.~79! and~80!
can be called the first-order Eucken and modified Euc
formulas for a dense HS fluid. In a separate communicat
we shall redo the Chapman-Enskog transport theories o
lute as well as dense HS fluids by including the rotatio
energies of the molecules and directly derive the first-or
modified Eucken formulas for dilute and dense fluids.

Equations~35!–~38! of continuity, linear momentum, an
energy reduce to the corresponding equations of HS flu
with N56 andD51.

IX. NUMERICAL RESULTS AND DISCUSSION

We have computed the zero-frequency shear viscosity
fluids consisting of hard prolate spheroids takingm5kBT
51 and expressing lengths in terms ofl, where l 358a2c
with a andc the semiminor and semimajor axes of a prola
molecule of massm. In l units, we havea5(1/2)(1
1ec)

21/6 and c5(1/2)(11ec)
1/3, where ec5(c/a)221 is

the anisotropy parameter. Also, the close-packed den
nCP51/(4&a2c) is now&.

The values ofh8 obtained using Eq.~A8!, which is an
explicit and computationally convenient version of Eq.~69!
obtained from our kinetic theory~KT!, are presented in
Table I for the axial ratiosc/a52, 3, 5, and 10 at various
density ratiosn/nCP. The corresponding results obtained
Allen et al. @16~f!# using molecular dynamics~MD! simula-
tions as well as TCF calculations are also shown for co
parison. Our values ofh8 are consistently lower than thos
from the MD results of Allenet al. @16~f!#. The TCF results
from Ref. @16~f!# are lower or higher than the correspondi
MD values without any definite trend, but are in better agr
di-

n
n,
i-
l
r

s

or

ity

-

-

ment with the MD than with our results forh8. In order to
analyze this irregular behavior, we have obtained in the A
pendix@Eq. ~A18!# a computationally convenient expressio
for Eq. ~33! of Ref. @16~f!# and calculated the correspondin
values shown ash08 ~ours! in Table I.

It can be seen from Eqs.~A8! and~A18! that bothh8 and
h08 consist of two parts, the first part having the same expr
sion. However, the second parts, i.e.,C1 andh`

sym, of these
two equations are different. The values ofh08 calculated by
us are consistently lower than the TCF values of Ref.@16~f!#
but the irregular behavior described above gets sligh
smoothed out. The possible reasons for the difference
tween KT and TCF results have been expounded in the
vious section, but it seems puzzling that the values ofh`

sym

calculated by us using Eq.~A17! in conjunction with Eq.
~A16! are at variance with those reported by Allenet al.
although we have used their expression forh`

sym, albeit re-
written in an explicit form. One sees from Table I that for
givenc/a andn/nCP the numerical value for (h82C1) is the
same as that for (h082h`

sym) calculated using TCF and re
ported in Ref.@16~f!# or calculated by us using Eqs.~A16!
and~A17!. Hence the disagreement between the values of
shear viscosity calculated by us and those reported in R
@16~f!# is solely due to the difference in the expressions
C1 andh`

sym.
Formula~68! for the volume viscosityÃ8 of a dense fluid

of hard biaxial ellipsoidal molecules is the sum of two term
the first is the viscosity term arising due to the collision
transfer and the second is entirely due to fast exchang
energy between the rotational and translational motions. T
exchange is very slow for nearly smooth molecules a
therefore,Ã8 will not contain the second term and there w
be two different temperatures@1~c!,3# characterizing the ro-
tational and translational energies. The first-order expr
sions for the shear viscosity and heat conductivity of a de
fluid of nearly smooth hard biaxial molecules can be e
mated from our work by approximatingv85v and VW m8

5VW m , but the transfer functionDÞ1. Under these approxi
mations, the collisional integralsa11 and a12 of Eq. ~47!



-

ol-

rs
r
s

e
ra
o-
-

-
ns
r

re
r

ar
a
ffi

En
o

f
n

f e
re
f

o
o

x
la

-

-
gle
o

7938 PRE 62G. S. SINGH AND B. KUMAR
reduce toa1155kBT/2@l#1 anda1250, and the equation be
comes

3kB
2T

8m S 25

a11
1

6

a22
D . ~81!

The linear velocity and angular velocity parts of the c
lisional integral can easily be executed by the modified@13#
Hoffman technique. The result will be different from ou
used in this paper. The formula~81! may be called anothe
modified Eucken formula for the heat conductivity becau
the values ofa11 anda22 of Eq. ~81! will be different from
those @1~c!# of the original modified Eucken formula. W
shall present a detailed analysis of this formula in a sepa
communication. The contribution of correlated multiple tw
body interactions~chattering collisions! has not been incor
porated in our work.

We have compared our numerical results forh8 with the
values of Allenet al. @16~f!# which in turn are the improve
ments over the values of their earlier calculatio
@16~c!,16~e!#. We have not made any attempt at a compa
son of the numerical values of@l8#1 obtained using Eq.~75!
with the corresponding molecular dynamics simulation
sults of Bereoloset al. @16~c!# as improvements of the latte
are also required@13#. Our results in Eqs.~68! and ~67! for
Ã8 and the hydrostatic pressureP02Ã8¹W •cW0 will await de-
tailed testing until simulation studies of these quantities
carried out. The transport coefficient results of this work c
be extended to derive semiclassical formulas for the coe
cients of a real dense polyatomic fluid in the same way
skog extended his results for a dense HS fluid to real m
atomic fluids.

The results@15# for the first-order transport coefficients o
a dense fluid of nearly smooth polyatomic molecules can
be easily compared with ours because the exchange o
ergy between the translational and rotational degrees of f
dom is fast in our work while it is slow in the problem o
nearly smooth molecules.
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APPENDIX: SHEAR VISCOSITY OF UNIAXIAL
ELLIPSOIDAL FLUIDS

Here, we obtain computationally convenient explicit e
pressions for the zero-frequency shear viscosity for pro
spheroids from our Eq.~69! as well as that from Eq.~33! of
Ref. @16~f!#. All expressions are in unitsm5kBT58a2c
51 as prescribed in Sec. IX.

First we considerh8 from Eq.~69!. With the help of Eqs.
~7!, ~21!, ~34!, ~35!, and~64!, and denoting the support func
tion h of the text byh2 , we can rewriteÔ(1/D2) andÃD of
Eq. ~69! in the forms
e

te

i-

-

e
n
-
-

n-

ot
n-
e-

f
.

-
te

ÔS 1

D2D52pÔ2S 1

D2D
52pÔ1S h11h2

D2 D
5

1

2p E
0

2pE
0

2pE
0

1E
0

1

df1df2dz1dz2

3^zex&orS h11h2

D2 D ~A1!

and

ÃD5
5

3
PÔ3S 1

D2D
5

5

3
PÔ2S h2

D2D5
5

3
PÔ1S h2~h11h2!

D2 D
5

5P

24p2 E
0

2pE
0

2pE
0

1E
0

1

df1df2dz1dz2

3^zex&orS h11h2

D D 2

, ~A2!

whereP5(8/15)Apn2Y(rWc) with Y(rWc) the contact pair dis-
tribution function. Furthermore, we have

hm5
Hm

2
~11ec!

21/6, Hm5~11eczm
2 !1/2, ~A3!

wherez15 k̂• ĉ1 andz252 k̂• ĉ2 with m51,2. Also,ĉm is the
unit vector along the symmetry axis of themth prolate spher-
oid.

From Eqs.~2!, ~14!, and ~A28! of Ref. @18~a!# together
with the substitutioneb50 therein, the orientationally aver
aged excluded volume surface element per unit solid an
for two colliding uniaxial ellipsoidal molecules turns out t
be

^zex&or[
1

4p2 E
0

2pE
0

2p

zexdf1df2

5
1

4
~11ec!

2/3S 1

H1
4 1

1

H2
4D

1
~11ec!

21/3

8H1H2
F11~11ec!S 1

H1
2 1

1

H2
2D

1S 11ec

H1H2
D 2G , ~A4!

since
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zex5
1

4
~11ec!

2/3S 1

H1
1

1

H2
D S 1

H1
3 1

1

H2
3D

1
1

4H1H2
~11ec!

21/3

3F12~11ec!S 1

H1
2 1

1

H2
2D 1S 11ec

H1H2
D 2Gsin2 f12,

~A5!

wheref12 is the angle between the projections ofĉ1 and ĉ2

in the plane perpendicular tok̂.
The translation-to-rotation energy transfer functionD is

obtained from Eq.~42! of Ref. @18~a!# written as

D2511
5

2 S ec
2

21ec
D (

m51

2 zm
2 ~12zm

2 !

Hm
2 . ~A6!

The shear viscosity@h#1 of Eq. ~69! for low-density fluids of
prolate spheroids is given in Eq.~68! of Ref. @18~a!# and
reads as

@h#15S 15

16Ap
D F E

0

1E
0

1

dz1dz2^zex&orS 5

D
2

2

D3D G21

.

~A7!

By substitution of Eqs.~A1!, ~A2!, and~A7! in Eq. ~69!, we
finally obtain the expression forh8 for a dense model fluid
consisting of hard prolate spheroids as

h85
15A1

16Ap
~11B1!21C1 ~A8!

with

A15FY~rWc!E
0

1E
0

1

dz1dz2^zex&orS 5

D
2

2

D3D G21

, ~A9!

B15S 12np

15~11ec!
1/6DY~rWc!E

0

1E
0

1

dz1dz2^zex&or

H11H2

D2 ,

~A10!

and

C15S n2Ap

15~11ec!
1/3DY~rWc!E

0

1E
0

1

dz1dz2^zex&orS H11H2

D D 2

.

~A11!

Next, we consider the expression for the shear viscosit
given @28# in Eq. ~33! of Ref. @16~f!#. This reads in our
notation as

n085
n

n22
~11qh!21h`

sym ~A12!

with the form ofqh given in Eq.~29! of that reference. In the
prescribed units,qh reduces toB1 of Eq. ~A9! becausen̂•rW
of @16~f!# is in our notation k̂•rW5(H11H2)/2(11ec)

1/6.
The definition of̂ ¯&c given in the Appendix of Ref.@16~f!#
as

has also been utilized in the above reduction. The quan
n22 of Eq. ~A12! is defined in Eq.~26a! of Ref. @16~f!# in
terms of the collision frequencyZ; the expression forZ as
mentioned in Ref.@16~c!# and derived in Ref.@18~c!# is

Z54nApY~rWc!E
0

1E
0

1

dz1dz2^zex&orD, ~A13!

which helps in rewritingn22 of Ref. @16~f!# in the form

n225
16nAp

15A1
. ~A14!

The form ofh`
sym of Eq. ~A12! is given in Eq.~20! of Ref.

@16~f!# as

h`
sym5S nZ

60̂ D&c
D K 1

D
@3r 21~ k̂•rW !2#L

c

. ~A15!

Our evaluation yields

3r 21~ k̂•rW !25~H11H2!2~11ec!
21/31 3

4 ~11ec!
21/3

3F ec
2H (

m51

2

zm
2 ~12zm

2 !Hm
2 )Hm

22

2
2z1z2

H1H2
S 21cosf12)

m51

2

~12zm
2 !21/2D J G .

~A16!

With the help of Eqs.~A13! and ~A15!, we get

h`
sym5

n2

30Ap
Y~rWc!E

0

1

dz1E
0

1

dz2E
0

2p

df12

3
Sex

D
@3r 21~ k̂•rW !2#. ~A17!

As qh has been shown to be equal toB1 of Eq. ~A10!, we
can write the final form of Eq.~A12! with the help of Eqs.
~A14! and ~A16! as

h085
15A1

16Ap
~11B1!21h`

sym. ~A18!

It may be noted by looking at Eqs.~A8! and ~A18! that the
first term of h8 is the same as that ofh08 . But the second
terms, i.e.,C1 andh`

sym, are different, although both contai
the factorn2.

In our computations, we have used the corrected@29#
Song and Mason@26# formula

Y~rWc!5
12g1h11g2h1

2

12h1
3 , ~A19!

whereh154pa2cn/35pn/6 is the packing fraction,

g1532
116a13a2

113a
, ~A20!
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and

g2532
212.6352a17a2

113a
, ~A21!

with a5RS/3V. The expressions@29,30# for the average ra-
dius of curvatureR, surface areaS, and volumeV for a
prolate spheroid withh25Aec /(11ec) are here given by
f

-

ck

rf
.
n,

d

m.
R5
1

4
~11ec!

1/3F11
12h2

2

2h2
lnS 11h2

12h2
D G , ~A22!

S5
p

2
~11ec!

21/3F11
sin21h2

h2A12h2
2G , ~A23!

andV5p/6.
.

P.

v.
,

ett.
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